

ANSI
Common Lisp

PRENTICE HALL SERIES
UW§ IN ARTIFICIAL INTELLIGENCE

Stuart Russell and Peter Norvig, Editors

GRAHAM ANSI Common Lisp
MUGGLETON Logical Foundations of Machine Learning
RUSSELL & NORVIG Artificial Intelligence: A Modern Approach

ANSI
Common Lisp

Paul Graham

An Alan R. Apt Book

Prentice Hall, Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data
Graham, Paul.

ANSI common lisp. / Paul Graham.
p. cm.

"An Alan R. Apt book."
Includes bibliographical references and index.
ISBN 0-13-370875-6
1. COMMON LISP (Computer program language) I. Tide.

QA76.73.C28G69 1996
005.13'3-dc20 95-45017

CIP

Publisher: Alan Apt
Production Editor: Mona Pompili
Cover Designer: Gino Lee
Copy Editor: Shirley Michaels
Production Coordinator: Donna Sullivan
Editorial Assistant: Shirley McGuire
Cover Photo: Ed Lynch

© 1996 by Prentice Hall, Inc.
Upper Saddle River, NJ 07458

The author and publisher of this book have used their best efforts in preparing this book.
These efforts include the development, research, and testing of the theories and programs
to determine their effectiveness. The author and publisher shall not be liable in any event
for incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

All trademarks are the property of their respective owners.

Printed in the United States of America

20

ISBN 0-13-370875-6

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Inc., Toronto
Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

•m

TORTM

Half lost on my firmness gains to more glad heart,
Or violent and from forage drives
A glimmering of all sun new begun
Both harp thy discourse they march'd,
Forth my early, is not without delay;
For their soft with whirlwind; and balm.
Undoubtedly he scornful turn'd round ninefold,
Though doubled now what redounds,
And chains these a lower world devote, yet inflicted?
Till body or rare, and best things else enjoy'd in heav'n
To stand divided light at ev'n and poise their eyes,
Or nourish, lik'ning spiritual, I have thou appear.

—Henley

Preface

The aim of this book is to teach you Common Lisp quickly and thoroughly.
It is really two books. The first half is a tutorial that explains, with plenty of
examples, all the essential concepts of Lisp programming. The second half
is an up-to-date summary of ANSI Common Lisp, describing every operator
in the language.

Audience

ANSI Common Lisp is intended for both students and professional program
mers. It assumes no prior knowledge of Lisp. Experience writing programs
in some other language would be helpful, but not absolutely necessary. The
book begins with the most basic concepts, and pays special attention to the
points that tend to confuse someone seeing Lisp for the first time.

This book could be used by itself as the textbook in a course on Lisp
programming, or to teach Lisp as part of a course on artificial intelligence or
programming languages. Professional programmers who want to learn Lisp
will appreciate the direct, practical approach. Those who already use Lisp
will find it a useful source of examples, and a convenient reference for ANSI
Common Lisp.

How to Use This Book

The best way to learn Lisp is to use it. It's also more fun to learn a language
by writing programs in it. This book is designed to get you started as quickly
as possible. After a brief Introduction,

vii

viii PREFACE

• Chapter 2 explains, in 21 pages, everything you need to start writing
Lisp programs.

• Chapters 3-9 introduce the essential elements of Lisp programming.
These chapters pay special attention to critical concepts like the role
of pointers in Lisp, the use of recursion to solve problems, and the
significance of first-class functions.

For readers who want a thorough grounding in Lisp techniques,

• Chapters 10-14 cover macros, CLOS, operations on list structure, opti
mization, and advanced topics like packages and read-macros.

• Chapters 15-17 sum up the lessons of the preceding chapters in three
examples of real applications: a program for making logical inferences,
an HTML generator, and an embedded language for object-oriented
programming.

The last part of the book consists of four appendices, which should be useful
to all readers:

• Appendices A-D include a guide to debugging, source code for 58
Common Lisp operators, a summary of the differences between ANSI
Common Lisp and previous versions of the language,0 and a reference
describing every operator in ANSI Common Lisp.

The book concludes with a section of notes. The notes contain clarifications,
references, additional code, and occasional heresies. Notes are indicated in
the text by a small circle, like this.0

The Code

Although it describes ANSI Common Lisp, this book has been designed so
that you can use it with any version of Common Lisp. Examples that depend
on newer features are usually accompanied by notes showing how they would
be rendered in older implementations.

All the code in this book is available online. You can find it, along with
links to free software, historic papers, the Lisp FAQ, and a variety of other
resources, at:

h t tp : / /www.eecs .harvard .edu/on l i sp /

The code is also available by anonymous FTP from:

f t p : / / f t p . e e c s . h a r v a r d . e d u : / p u b / o n l i s p /

Questions and comments can be sent to pgOeecs. harvard. edu.

http://www.eecs.harvard.edu/onlisp/
ftp://ftp.eecs.harvard.edu:/pub/onlisp/

PREFACE IX

On Lisp

Throughout this book I've tried to point out the unique qualities that make
Lisp Lisp, and the new things that this language will let you do. Macros,
for example: Lisp programmers can, and often do, write programs to write
their programs for them. Lisp is the only major language in which this is a
routinely used technique, because Lisp is the only major language to provide
the abstractions that make it convenient. I would like to invite readers who
are interested in learning more about macros and other advanced techniques
to read the companion volume, On Lisp.

Acknowledgements

Of all the friends who have helped me during the writing of this book, I owe
special thanks to Robert Morris. The whole book reflects his influence, and is
very much the better for it. Several of the examples are derived from programs
he originally wrote, including Henley (page 138) and the pattern-matcher on
page 249.

I was fortunate to have a first-rate team of technical reviewers: Skona
Brittain, John Foderaro, Nick Levine, Peter Norvig, and Dave Touretzky.
There is hardly a page of the book that did not benefit in some way from their
suggestions. John Foderaro even rewrote some of the code in Section 5.7.

Several other people consented to read all or part of the manuscript,
including Ken Anderson, Tom Cheatham, Richard Fateman, Steve Hain,
Barry Margolin, Waldo Pacheco, Wheeler Ruml, and Stuart Russell. Ken
Anderson and Wheeler Ruml, in particular, made many useful comments.

I'm grateful to Professor Cheatham, and Harvard generally, for providing
the facilities used to write this book. Thanks also to the staff at Aiken Lab,
including Tony Hartman, Dave Mazieres, Janusz Juda, Harry Bochner, and
Joanne Klys.

I'm glad to have had the chance to work with Alan Apt again. The
people at Prentice Hall—Alan, Mona Pompili, Shirley McGuire, and Shirley
Michaels—are really a pleasure to work with.

The cover is again the work of the incomparable Gino Lee, of the Bow &
Arrow Press, Cambridge.

This book was typeset using L̂ TgX, a language written by Leslie Lamport
atop Donald Knuth's Tj3C, with additional macros by L. A. Carr, Van Jacobson,
and Guy Steele. The diagrams were done with Idraw, by John Vlissides and
Scott Stanton. The whole was previewed with Ghostview, by Tim Theisen,
which is built on Ghostscript, by L. Peter Deutsch.

I owe thanks to many others, including Henry Baker, Kim Barrett, Ingrid
Bassett, Trevor Blackwell, Paul Becker, Gary Bisbee, Frank Deutschmann,
Frances Dickey, Rich and Scott Draves, Bill Dubuque, Dan Friedman, Jenny

X PREFACE

Graham, Alice Hartley, David Hendler, Mike Hewett, Glenn Holloway, Brad
Karp, Sonya Keene, Ross Knights, Mutsumi Komuro, Steffi Kutzia, David
Kuznick, Madi Lord, Julie Mallozzi, Paul McNamee, Dave Moon, Howard
Mullings, Mark Nitzberg, Nancy Parmet and her family, Robert Penny, Mike
Plusch, Cheryl Sacks, Hazem Sayed, Shannon Spires, Lou Steinberg, Paul
Stoddard, John Stone, Guy Steele, Steve Strassmann, Jim Veitch, Dave
Watkins, Idelle and Julian Weber, the Weickers, Dave Yost, and Alan Yuille.

Most of all, I'd like to thank my parents, and Jackie.

Donald Knuth called his classic series The Art of Computer Programming.
In his Turing Award Lecture, he explained that this title was a conscious
choice—that what drew him to programming was "the possibility of writing
beautiful programs."

Like architecture, programming has elements of both art and science. A
program has to live up to mathematical truth in the same way that a building
has to live up to the laws of physics. But the architect's aim is not simply
to make a building that doesn't fall down. Almost always the real aim is to
make something beautiful.

Many programmers feel, like Donald Knuth, that this is also the real aim
of programming. Almost all Lisp hackers do. The spirit of Lisp hacking
can be expressed in two sentences. Programming should be fun. Programs
should be beautiful. That's the spirit I have tried to convey in this book.

Paul Graham

Contents

1. Introduction 1

1.1. New Tools 1
1.2. New Techniques 3
1.3. A New Approach 4

2. Welcome to Lisp 7

2.1. Form 7
2.2. Evaluation 9
2.3. Data 10
2.4. List Operations 12
2.5. Truth 13
2.6. Functions 14
2.7. Recursion 16
2.8. Reading Lisp 17
2.9. Input and Output 18
2.10. Variables 19
2.11. Assignment 21
2.12. Functional Programming 22
2.13. Iteration 23
2.14. Functions as Objects 25
2.15. Types 27
2.16. Looking Forward 27

3. Lists 31

3.1. Conses 31
3.2. Equality 34
3.3. Why Lisp Has No Pointers 34
3.4. Building Lists 36
3.5. Example: Compression 36
3.6. Access 39

3.7. Mapping Functions 40
3.8. Trees 40
3.9. Understanding Recursion 42
3.10. Sets 43
3.11. Sequences 45
3.12. Stacks 47
3.13. Dotted Lists 49
3.14. Assoc-lists 51
3.15. Example: Shortest Path 51
3.16. Garbage 54

4. Specialized Data
Structures 58

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

4.8.

Arrays 58
Example: Binary Search 60
Strings and Characters 61
Sequences 63
Example: Parsing Dates 66
Structures 69
Example: Binary Search
Trees 71
Hash Tables 76

5. Control 81

5.1. Blocks 81
5.2. Context 83
5.3. Conditionals 85
5.4. Iteration 87
5.5. Multiple Values 89
5.6. Aborts 91

xi

xii CONTENTS

5.7. Example: Date Arithmetic 92

6. Functions 99

6.1. Global Functions 99
6.2. Local Functions 101
6.3. Parameter Lists 102
6.4. Example: Utilities 104
6.5. Closures 107
6.6. Example: Function

Builders 109
6.7. Dynamic Scope 112
6.8. Compilation 113
6.9. Using Recursion 114

7. Input and Output 119

7.1. Streams 119
7.2. Input 121
7.3. Output 123
7.4. Example: String

Substitution 125
7.5. Macro Characters 130

8. Symbols 133

8.1. Symbol Names 133
8.2. Property Lists 134
8.3. Symbols Are Big 135
8.4. Creating Symbols 136
8.5. Multiple Packages 136
8.6. Keywords 137
8.7. Symbols and Variables 138
8.8. Example: Random Text 138

9. Numbers 143

9.1. Types 143
9.2. Conversion and

Extraction 144
9.3. Comparison 146
9.4. Arithmetic 147
9.5. Exponentiation 148
9.6. Trigonometric Functions 149
9.7. Representation 150
9.8. Example: Ray-Tracing 151

10. Macros 160

10.1. Eval 160
10.2. Macros 162
10.3. Backquote 163
10.4. Example: Quicksort 164
10.5. Macro Design 165
10.6. Generalized Reference 168
10.7. Example: Macro

Utilities 169
10.8. On Lisp 173

11. CLOS 176

11.1. Object-Oriented
Programming 176

11.2. Classes and Instances 179
11.3. Slot Properties 179
11.4. Superclasses 181
11.5. Precedence 182
11.6. Generic Functions 184
11.7. Auxiliary Methods 187
11.8. Method Combination 189
11.9. Encapsulation 190
11.10. Two Models 192

12. Structure 195

12.1. Shared Structure 195
12.2. Modification 198
12.3. Example: Queues 200
12.4. Destructive Functions 201
12.5. Example: Binary Search

Trees 203
12.6. Example: Doubly-Linked

Lists 204
12.7. Circular Structure 208
12.8. Constant Structure 210

13. Speed 213

13.1. The Bottleneck Rule 213
13.2. Compilation 214
13.3. Type Declarations 217
13.4. Garbage Avoidance 222
13.5. Example: Pools 226
13.6. Fast Operators 228
13.7. Two-Phase Development 229

CONTENTS

14. Advanced Topics 232

14.1. Type Specifiers 232
14.2. Binary Streams 234
14.3. Read-Macros 235
14.4. Packages 236
14.5. The Loop Facility 239
14.6. Conditions 244

15. Example: Inference 247

15.1. The Aim 247
15.2. Matching 248
15.3. Answering Queries 251
15.4. Analysis 255

16. Example: Generating
HTML 257

16.1. HTML 257
16.2. HTML Utilities 259
16.3. An Iteration Utility 262
16.4. Generating Pages 264

17. Example: Objects 269

17.1. Inheritance 269
17.2. Multiple Inheritance 271
17.3. Defining Objects 273
17.4. Functional Syntax 274
17.5. Defining Methods 275
17.6. Instances 277
17.7. New Implementation 277
17.8. Analysis 284

A. Debugging 287

B. Lisp in Lisp 295

C. Changes to Common

Lisp 304

D. Language Reference 310

Notes 401
Index 415

ANSI
Common Lisp

Introduction

John McCarthy and his students began work on the first Lisp implementation
in 1958. After FORTRAN, Lisp is the oldest language still in use.0 What's
more remarkable is that it is still in the forefront of programming language
technology. Programmers who know Lisp will tell you, there is something
about this language that sets it apart.

Part of what makes Lisp distinctive is that it is designed to evolve. You can
use Lisp to define new Lisp operators. As new abstractions become popular
(object-oriented programming, for example), it always turns out to be easy to
implement them in Lisp. Like DNA, such a language does not go out of style.

1.1 New Tools

Why learn Lisp? Because it lets you do things that you can't do in other
languages. If you just wanted to write a function to return the sum of the
numbers less than n> say, it would look much the same in Lisp and C:

; Lisp /* C */
(defun sum (n) int aum(int n)<

(let ((s 0)) int i , s = 0;
(dotimes (i n s) for(i = 0; i < n; i++)

(incf s i)))) s += i ;
re turn(s) ;

If you only need to do such simple things, it doesn't really matter which
language you use. Suppose instead you want to write a function that takes a

1

2 INTRODUCTION

number n, and returns a function that adds n to its argument:

; Lisp
(defun addn (n)
#'(lambda (x)

(+ x n)))

What does addn look like in C? You just can't write it.
You might be wondering, when does one ever want to do things like this?

Programming languages teach you not to want what they cannot provide.
You have to think in a language to write programs in it, and it's hard to want
something you can't describe. When I first started writing programs—in
Basic—I didn't miss recursion, because I didn't know there was such a thing.
I thought in Basic. I could only conceive of iterative algorithms, so why
should I miss recursion?

If you don't miss lexical closures (which is what's being made in the
preceding example), take it on faith, for the time being, that Lisp programmers
use them all the time. It would be hard to find a Common Lisp program of
any length that did not take advantage of closures. By page 112 you will be
using them yourself.

And closures are only one of the abstractions we don't find in other
languages. Another unique feature of Lisp, possibly even more valuable, is
that Lisp programs are expressed as Lisp data structures. This means that
you can write programs that write programs. Do people actually want to do
this? Yes—they're called macros, and again, experienced programmers use
them all the time. By page 173 you will be able to write your own.

With macros, closures, and run-time typing, Lisp transcends object-
oriented programming. If you understood the preceding sentence, you prob
ably should not be reading this book. You would have to know Lisp pretty
well to see why it's true. But it is not just words. It is an important point, and
the proof of it is made quite explicit, in code, in Chapter 17.

Chapters 2-13 will gradually introduce all the concepts that you'll need
in order to understand the code in Chapter 17. The reward for your efforts
will be an equivocal one: you will feel as suffocated programming in C++
as an experienced C++ programmer would feel programming in Basic. It's
more encouraging, perhaps, if we think about where this feeling comes from.
Basic is suffocating to someone used to C++ because an experienced C++
programmer knows techniques that are impossible to express in Basic. Like
wise, learning Lisp will teach you more than just a new language—it will
teach you new and more powerful ways of thinking about programs.

1.2 NEW TECHNIQUES 3

1.2 New Techniques

As the preceding section explained, Lisp gives you tools that other languages
don't provide. But there is more to the story than this. Taken separately,
the new things that come with Lisp—automatic memory management, man
ifest typing, closures, and so on—each make programming that much easier.
Taken together, they form a critical mass that makes possible a new way of
programming.

Lisp is designed to be extensible: it lets you define new operators yourself.
This is possible because the Lisp language is made out of the same functions
and macros as your own programs. So it's no more difficult to extend Lisp than
to write a program in it. In fact, it's so easy (and so useful) that extending the
language is standard practice. As you're writing your program down toward
the language, you build the language up toward your program. You work
bottom-up, as well as top-down.

Almost any program can benefit from having the language tailored to suit
its needs, but the more complex the program, the more valuable bottom-up
programming becomes. A bottom-up program can be written as a series of
layers, each one acting as a sort of programming language for the one above.
TgX was one of the earliest programs to be written this way. You can write
programs bottom-up in any language, but Lisp is far the most natural vehicle
for this style.

Bottom-up programming leads naturally to extensible software. If you
take the principle of bottom-up programming all the way to the topmost layer
of your program, then that layer becomes a programming language for the
user. Because the idea of extensibility is so deeply rooted in Lisp, it makes the
ideal language for writing extensible software. Three of the most successful
programs of the 1980s provide Lisp as an extension language: Gnu Emacs,
Autocad, and Interleaf.

Working bottom-up is also the best way to get reusable software. The
essence of writing reusable software is to separate the general from the
specific, and bottom-up programming inherently creates such a separation.
Instead of devoting all your effort to writing a single, monolithic application,
you devote part of your effort to building a language, and part to writing
a (proportionately smaller) application on top of it. What's specific to this
application will be concentrated in the topmost layer. The layers beneath will
form a language for writing applications like this one—and what could be
more reusable than a programming language?

Lisp allows you not just to write more sophisticated programs, but to write
them faster. Lisp programs tend to be short—the language gives you bigger
concepts, so you don't have to use as many. As Frederick Brooks has pointed
out, the time it takes to write a program depends mostly on its length.0 So
this fact alone means that Lisp programs take less time to write. The effect is

4 INTRODUCTION

amplified by Lisp's dynamic character: in Lisp the edit-compile-test cycle is
so short that programming is real-time.

Bigger abstractions and an interactive environment can change the way
organizations develop software. The phrase rapid prototyping describes a
kind of programming that began with Lisp: in Lisp, you can often write a
prototype in less time than it would take to write the spec for one. What's
more, such a prototype can be so abstract that it makes a better spec than one
written in English. And Lisp allows you to make a smooth transition from
prototype to production software. When Common Lisp programs are written
with an eye to speed and compiled by modern compilers, they run as fast as
programs written in any other high-level language.

Unless you already know Lisp quite well, this introduction may seem a
collection of grand and possibly meaningless claims. Lisp transcends object-
oriented programming? You build the language up toward your programs?
Lisp programming is real-time? What can such statements mean? At the
moment, these claims are like empty lakes. As you learn more of the actual
features of Lisp, and see examples of working programs, they will fill with
real experience and take on a definite shape.

1.3 A New Approach

One of the aims of this book is to explain not just the Lisp language, but the
new approach to programming that Lisp makes possible. This approach is one
that you will see more of in the future. As programming environments grow
in power, and languages become more abstract, the Lisp style of programming
is gradually replacing the old plan-and-implement model.

In the old model, bugs are never supposed to happen. Thorough speci
fications, painstakingly worked out in advance, are supposed to ensure that
programs work perfectly. Sounds good in theory. Unfortunately, the specifi
cations are both written and implemented by humans. The result, in practice,
is that the plan-and-implement method does not work very well.

As manager of the OS/360 project, Frederick Brooks was well acquainted
with the traditional approach. He was also acquainted with its results:

Any OS/360 user is quickly aware of how much better it should
be. . . Furthermore, the product was late, it took more memory
than planned, the costs were several times the estimate, and it
did not perform very well until several releases after the first.0

And this is a description of one of the most successful systems of its era.
The problem with the old model was that it ignored human limitations. In

the old model, you are betting that specifications won't contain serious flaws,
and that implementing them will be a simple matter of translating them into

L3 A NEW APPROACH 5

code. Experience has shown this to be a very bad bet indeed. It would be
safer to bet that specifications will be misguided, and that code will be full of
bugs.

This is just what the new model of programming does assume. Instead of
hoping that people won't make mistakes, it tries to make the cost of mistakes
very low. The cost of a mistake is the time required to correct it. With
powerful languages and good programming environments, this cost can be
greatly reduced. Programming style can then depend less on planning and
more on exploration.

Planning is a necessary evil. It is a response to risk: the more dangerous an
undertaking, the more important it is to plan ahead. Powerful tools decrease
risk, and so decrease the need for planning. The design of your program
can then benefit from what is probably the most useful source of information
available: the experience of implementing it.

Lisp style has been evolving in this direction since the 1960s. You can
write prototypes so quickly in Lisp that you can go through several iterations
of design and implementation before you would, in the old model, have even
finished writing out the specifications. You don't have to worry so much
about design flaws, because you discover them a lot sooner. Nor do you have
to worry so much about bugs. When you program in a functional style, bugs
can only have a local effect. When you use a very abstract language, some
bugs (e.g. dangling pointers) are no longer possible, and what remain are easy
to find, because your programs are so much shorter. And when you have an
interactive environment, you can correct bugs instantly, instead of enduring
a long cycle of editing, compiling, and testing.

Lisp style has evolved this way because it yields results. Strange as it
sounds, less planning can mean better design. The history of technology is
full of parallel cases. A similar change took place in painting during the
fifteenth century. Before oil paint became popular, painters used a medium,
called tempera, that cannot be blended or overpainted. The cost of mistakes
was high, and this tended to make painters conservative. Then came oil paint,
and with it a great change in style. Oil "allows for second thoughts."0 This
proved a decisive advantage in dealing with difficult subjects like the human
figure.

The new medium did not just make painters' lives easier. It made possible
a new and more ambitious kind of painting. Janson writes:

Without oil, the Flemish Masters' conquest of visible reality
would have been much more limited. Thus, from a technical
point of view, too, they deserve to be called the "fathers of
modern painting," for oil has been the painter's basic medium
ever since.0

6 INTRODUCTION

As a material, tempera is no less beautiful than oil. But the flexibility of oil
paint gives greater scope to the imagination—that was the deciding factor.

Programming is now undergoing a similar change. The new medium is
the "object-oriented dynamic language"—in a word, Lisp. This is not to
say that all our software is going to be written in Lisp within a few years.
The transition from tempera to oil did not happen overnight; at first, oil was
only popular in the leading art centers, and was often used in combination
with tempera. We seem to be in this phase now. Lisp is used in universities,
research labs, and a few leading-edge companies. Meanwhile, ideas borrowed
from Lisp increasingly turn up in the mainstream: interactive programming
environments, garbage collection, and run-time typing, to name a few.

More powerful tools are taking the risk out of exploration. That's good
news for programmers, because it means that we will be able to undertake
more ambitious projects. The use of oil paint certainly had this effect. The
period immediately following its adoption was a golden age for painting.
There are signs already that something similar is happening in programming.

2

Welcome to Lisp

This chapter aims to get you programming as soon as possible. By the end
of it you will know enough Common Lisp to begin writing programs.

2.1 Form

It is particularly true of Lisp that you learn it by using it, because Lisp is an
interactive language. Any Lisp system will include an interactive front-end
called the toplevel. You type Lisp expressions into the toplevel, and the
system displays their values.

Lisp usually displays a prompt to tell you that it's waiting for you to type
something. Many implementations of Common Lisp use > as the toplevel
prompt. That's what we'll use here.

One of the simplest kinds of Lisp expression is an integer. If we enter 1
after the prompt,

> 1
1
>

the system will print its value, followed by another prompt, to say that it's
ready for more.

In this case, the value displayed is the same as what we typed. A number
like 1 is said to evaluate to itself. Life gets more interesting when we enter
expressions that take some work to evaluate. For example, if we want to add
two numbers together, we type something like:

7

8 WELCOME TO LISP

> (+ 2 3)
5

In the expression (+ 2 3), the + is called the operator, and the numbers 2
and 3 are called the arguments.

In everyday life, we would write this expression as 2 + 3, but in Lisp we
put the + operator first, followed by the arguments, with the whole expression
enclosed in a pair of parentheses: (+ 2 3). This is called prefix notation,
because the operator comes first. It may at first seem a strange way to write
expressions, but in fact this notation is one of the best things about Lisp.

For example, if we want to add three numbers together, in ordinary
notation we have to use + twice,

2 + 3 + 4

while in Lisp we just add another argument:

(+ 2 3 4)

The way we ordinarily use +, it must have exactly two arguments: one on
the left and one on the right. The flexibility of prefix notation means that, in
Lisp, + can take any number of arguments, including none:

> (+)
0
> (+ 2)
2
> (+ 2 3)
5
> (+ 2 3 4)
9
> (+ 2 3 4 5)
14

Because operators can take varying numbers of arguments, we need paren
theses to show where an expression begins and ends.

Expressions can be nested. That is, the arguments in an expression may
themselves be complex expressions:

> (/ (- 7 1) (- 4 2))
3

In English, this is seven minus one, divided by four minus two.

2.2 EVALUATION 9

Another beauty of Lisp notation is: this is all there is. All Lisp expressions
are either atoms, like 1, or lists, which consist of zero or more expressions
enclosed in parentheses. These are valid Lisp expressions:

2 (+ 2 3) (+ 2 3 4) (/ (- 7 1) (- 4 2))

As we will see, all Lisp code takes this form. A language like C has a
more complicated syntax: arithmetic expressions use infix notation; function
calls use a sort of prefix notation, with the arguments delimited by commas;
expressions are delimited by semicolons; and blocks of code are delimited by
curly brackets. In Lisp, we use a single notation to express all these ideas.

2.2 Evaluation

In the previous section, we typed expressions into the toplevel, and Lisp
displayed their values. In this section we take a closer look at how expressions
are evaluated.

In Lisp, + is a function, and an expression like (+ 2 3) is a function call.
When Lisp evaluates a function call, it does so in two steps:

1. First the arguments are evaluated, from left to right. In this case, each
argument evaluates to itself, so the values of the arguments are 2 and
3, respectively.

2. The values of the arguments are passed to the function named by the
operator. In this case, it is the + function, which returns 5.

If any of the arguments are themselves function calls, they are evaluated
according to the same rules. So when (/ (- 7 1) (- 4 2)) is evaluated,
this is what happens:

1. Lisp evaluates (- 7 1): 7 evaluates to 7 and 1 evaluates to 1. These
values are passed to the function -, which returns 6.

2. Lisp evaluates (- 4 2): 4 evaluates to 4 and 2 evaluates to 2. These
values are passed to the function -, which returns 2.

3. The values 6 and 2 are sent to the function / , which returns 3.

Not all the operators in Common Lisp are functions, but most are. And
function calls are always evaluated this way. The arguments are evaluated
left-to-right, and their values are passed to the function, which returns the
value of the expression as a whole. This is called the evaluation rule for
Common Lisp.

10 WELCOME TO LISP

GETTING OUT OF TROUBLE

If you type something that Lisp can't understand, it will display an error
message and put you into a version of the toplevel called a break loop.
The break loop gives experienced programmers a chance to figure out what
caused an error, but initially the only thing you will want to do in a break
loop is get out of it. What you have to type to get back to the toplevel
depends on your implementation of Common Lisp. In this hypothetical
implementation, : abort does it:

> (/ 1 0)
Error: Division by zero.

Options: :abort, :backtrace
» :abort
>

Appendix A shows how to debug Lisp programs, and gives examples of
some of the most common errors.

One operator that doesn't follow the Common Lisp evaluation rule is
quote. The quote operator is a special operator, meaning that it has a
distinct evaluation rule of its own. And the rule is: do nothing. The quote
operator takes a single argument, and just returns it verbatim:

> (quote (+ 3 5))
(+ 3 5)

For convenience, Common Lisp defines ' as an abbreviation for quote.
You can get the effect of calling quote by affixing a ' to the front of any
expression:

> ' (+ 3 5)
(+ 3 5)

It is much more common to use the abbreviation than to write out the whole
quote expression.

Lisp provides the quote as a way of protecting expressions from evalua
tion. The next section will explain how such protection can be useful.

2.3 Data

Lisp offers all the data types we find in most other languages, along with
several others that we don't. One data type we have used already is the

2.3 DATA 11

integer, which is written as a series of digits: 256. Another data type Lisp
has in common with most other languages is the string, which is represented
as a series of characters surrounded by double-quotes: "ora e t labora".
Integers and strings both evaluate to themselves.

Two Lisp data types that we don't commonly find in other languages
are symbols and lists. Symbols are words. Ordinarily they are converted to
uppercase, regardless of how you type them:

> 'Artichoke
ARTICHOKE

Symbols do not (usually) evaluate to themselves, so if you want to refer to a
symbol, you should quote it, as above.

Lists are represented as zero or more elements enclosed in parentheses.
The elements can be of any type, including lists. You have to quote lists, or
Lisp would take them for function calls:

> '(my 3 "Sons")
(MY 3 "Sons")
> '(the list (a b c) has 3 elements)
(THE LIST (A B C) HAS 3 ELEMENTS)

Notice that one quote protects a whole expression, including expressions
within it.

You can build lists by calling l i s t . Since l i s t is a function, its arguments
are evaluated. Here we see a call to + within a call to l i s t :

> (l i s t 'my (+ 2 1) "Sons")
(MY 3 "Sons")

We are now in a position to appreciate one of the most remarkable features
of Lisp. Lisp programs are expressed as lists. If the arguments of flexibility
and elegance did not convince you that Lisp notation is a valuable tool, this
point should. It means that Lisp programs can generate Lisp code. Lisp
programmers can (and often do) write programs to write their programs for
them.

Such programs are not considered till Chapter 10, but it is important even
at this stage to understand the relation between expressions and lists, if only
to avoid being confused by it. This is why we need the quote. If a list is
quoted, evaluation returns the list itself; if it is not quoted, the list is treated
as code, and evaluation returns its value:

> (l i s t ' (+ 2 1) (+ 2 1))
((+ 2 1) 3)

12 WELCOME TO LISP

Here the first argument is quoted, and so yields a list. The second argument
is not quoted, and is treated as a function call, yielding a number.

In Common Lisp, there are two ways of representing the empty list. You
can represent it as a pair of parentheses with nothing between them, or you
can use the symbol n i l . It doesn't matter which way you write the empty
list, but it will be displayed as n i l :

> 0
NIL
> n i l
NIL

You don't have to quote n i l (though it wouldn't hurt) because n i l evaluates
to itself.

2.4 List Operations

The function cons builds lists. If its second argument is a list, it returns a
new list with the first argument added to the front:

> (cons ' a ' (b c d))
(A B C D)

We can build up lists by consing new elements onto an empty list. The l i s t
function that we saw in the previous section is just a more convenient way of
consing several things onto n i l :

> (cons ' a (cons ; b n i l))
(A B)
> (l i s t ; a >b)
(A B)

The primitive functions for extracting the elements of lists are car and
cdr.° The car of a list is the first element, and the cdr is everything after the
first element:

> (car ' (a b c))
A
> (cdr ' (a b c))
(B C)

You can use combinations of car and cdr to reach any element of a list.
If you want to get the third element, you could say:

2.5 TRUTH 13

> (car (cdr (cdr ' (a b c d))))
C

However, you can do the same thing more easily by calling t h i rd :

> (t h i rd ' (a b c d))
C

2.5 Truth

In Common Lisp, the symbol t is the default representation for truth. Like
n i l , t evaluates to itself. The function l i s t p returns true if its argument is
a list:

> (l i s t p ; (a b c))
T

A function whose return value is intended to be interpreted as truth or falsity
is called a predicate. Common Lisp predicates often have names that end
with p.

Falsity in Common Lisp is represented by n i l , the empty list. If we give
l i s t p an argument that isn't a list, it returns n i l :

> (l i s t p 27)
NIL

Because n i l plays two roles in Common Lisp, the function nu l l , which
returns true of the empty list.

> (nul l n i l)
T

and the function not, which returns true if its argument is false,

> (not n i l)
T

do exactly the same thing.
The simplest conditional in Common Lisp is if. It usually takes three

arguments: a test expression, a then expression, and an else expression. The
test expression is evaluated. If it returns true, the then expression is evaluated
and its value is returned. If the test expression returns false, the else expression
is evaluated and its value is returned:

14 WELCOME TO LISP

> (i f (l i s t p ' (a b c))
(+ 1 2)
(+ 5 6))

3
> (i f (l i s t p 27)

(+ 1 2)
(+ 5 6))

11

Like quote, if is a special operator. It could not possibly be implemented as
a function, because the arguments in a function call are always evaluated, and
the whole point of if is that only one of the last two arguments is evaluated.

The last argument to if is optional. If you omit it, it defaults to n i l :

> (i f (l i s t p 27)
(+ 2 3))

NIL

Although t is the default representation for truth, everything except n i l
also counts as true in a logical context:

> (i f 27 1 2)
1

The logical operators and and or resemble conditionals. Both take any
number of arguments, but only evaluate as many as they need to in order to
decide what to return. If all its arguments are true (that is, not n i l) , then and
returns the value of the last one:

> (and t (+ 1 2))
3

But if one of the arguments turns out to be false, none of the arguments
after that get evaluated. Similarly for or, which stops as soon as it finds an
argument that is true.

These two operators are macros. Like special operators, macros can
circumvent the usual evaluation rule. Chapter 10 explains how to write
macros of your own.

2.6 Functions

You can define new functions with def un. It usually takes three or more
arguments: a name, a list of parameters, and one or more expressions that
will make up the body of the function. Here is how we might define th i rd :

2.7 FUNCTIONS 15

> (defun o u r - t h i r d (x)
(car (cdr (cdr x))))

OUR-THIRD

The first argument says that the name of this function will be ou r - th i rd .
The second argument, the list (x), says that the function will take exactly one
argument: x. A symbol used as a placeholder in this way is called a variable.
When the variable represents an argument to a function, as x does, it is also
called a parameter.

The rest of the definition, (car (cdr (cdr x))) , is known as the body
of the function. It tells Lisp what it has to do to calculate the return value of
the function. So a call to o u r - t h i r d returns (car (cdr (cdr x))) , for
whatever x we give as the argument:

> (our-third i (a b c d))
C

Now that we've seen variables, it's easier to understand what symbols are.
They are variable names, existing as objects in their own right. And that's
why symbols, like lists, have to be quoted. A list has to be quoted because
otherwise it will be treated as code; a symbol has to be quoted because
otherwise it will be treated as a variable.

You can think of a function definition as a generalized version of a Lisp
expression. The following expression tests whether the sum of 1 and 4 is
greater than 3:

> (> (+ 1 4) 3)
T

By replacing these particular numbers with variables, we can write a function
that will test whether the sum of any two numbers is greater than a third:

> (defun sum-greater (x y z)
(> (+ x y) z))

SUM-GREATER
> (sum-greater 1 4 3)
T

Lisp makes no distinction between a program, a procedure, and a function.
Functions do for everything (and indeed, make up most of the language itself).
If you want to consider one of your functions as the main function, you can,
but you will ordinarily be able to call any function from the toplevel. Among
other things, this means that you will be able to test your programs piece by
piece as you write them.

16 WELCOME TO LISP

2.7 Recursion

The functions we defined in the previous section called other functions to do
some of their work for them. For example, sum-greater called + and >. A
function can call any function, including itself.

A function that calls itself is recursive. The Common Lisp function
member tests whether something is an element of a list. Here is a simplified
version defined as a recursive function:

(defun our-member (obj 1st)
(if (null 1st)

nil
(if (eql (car 1st) obj)

1st
(our-member obj (cdr 1st)))))

The predicate eql tests whether its two arguments are identical; aside from
that, everything in this definition is something we have seen before. Here it
is in action:

> (our-member >b }(a b c))
(B C)
> (our-member ;z '(a b c))
NIL

The definition of our-member corresponds to the following English de
scription. To test whether an object obj is a member of a list 1st, we

1. First check whether 1st is empty. If it is, then obj is clearly not a
member of it, and we're done.

2. Otherwise, if obj is the first element of 1st , it is a member.

3. Otherwise obj is only a member of 1st if it is a member of the rest of
1st .

When you want to understand how a recursive function works, it can help to
translate it into a description of this kind.

Many people find recursion difficult to understand at first. A lot of the
difficulty comes from using a mistaken metaphor for functions. There is a
tendency to think of a function as a sort of machine. Raw materials arrive
as parameters; some of the work is farmed out to other functions; finally
the finished product is assembled and shipped out as the return value. If we
use this metaphor for functions, recursion becomes a paradox. How can a
machine farm out work to itself? It is already busy.

2.8 READING LISP 17

A better metaphor for a function would be to think of it as a process
one goes through. Recursion is natural in a process. We often see recursive
processes in everyday life. For example, suppose a historian was interested
in population changes in European history. The process of examining a
document might be as follows:

1. Get a copy of the document.

2. Look for information relating to population changes.

3. If the document mentions any other documents that might be useful,
examine them.

This process is easy enough to understand, yet it is recursive, because the
third step could entail one or more applications of the same process.

So don't think of our-member as a machine that tests whether something
is in a list. Think of it instead as the rules for determining whether something
is in a list. If we think of functions in this light, the paradox of recursion
disappears.0

2.8 Reading Lisp

The pseudo-member defined in the preceding section ends with five paren
theses. More elaborate function definitions might end with seven or eight.
People who are just learning Lisp find the sight of so many parentheses dis
couraging. How is one to read, let alone write, such code? How is one to see
which parenthesis matches which?

The answer is, one doesn't have to. Lisp programmers read and write
code by indentation, not by parentheses. When they're writing code, they
let the text editor show which parenthesis matches which. Any good editor,
particularly if it comes with a Lisp system, should be able to do paren-
matching. In such an editor, when you type a parenthesis, the editor indicates
the matching one. If your editor doesn't match parentheses, stop now and
figure out how to make it, because it is virtually impossible to write Lisp code
without it.1

With a good editor, matching parentheses ceases to be an issue when
you're writing code. And because there are universal conventions for Lisp
indentation, it's not an issue when you're reading code either. Because
everyone uses the same conventions, you can read code by the indentation,
and ignore the parentheses.

Any Lisp hacker, however experienced, would find it difficult to read the
definition of our-member if it looked like this:

1 In vi, you can turn on paren-matching with : se t sm. In Emacs, M-x lisp-mode is a good
way to get it.

18 WELCOME TO LISP

(defun our-member (obj 1st) (if (null 1st) nil (if
(eql (car 1st) obj) 1st (our-member obj (cdr 1st)))))

But when the code is properly indented, one has no trouble. You could omit
most of the parentheses and still read it:

defun our-member (obj 1st)

if null 1st

nil

if eql (car 1st) obj

1st

our-member obj (cdr 1st)

Indeed, this is a practical approach when you're writing code on paper. Later,
when you type it in, you can take advantage of paren-matching in the editor.

2.9 Input and Output

So far we have done I/O implicitly, by taking advantage of the toplevel. For
real interactive programs this is not likely to be enough. In this section we
look at a few functions for input and output.

The most general output function in Common Lisp is f ormat. It takes two
or more arguments: the first indicates where the output is to be printed, the
second is a string template, and the remaining arguments are usually objects
whose printed representations are to be inserted into the template. Here is a
typical example:

> (format t "~A plus ~A equals ~A.T' 2 3 (+2 3))

2 plus 3 equals 5.

NIL

Notice that two things get displayed here. The first line is displayed by
f ormat. The second line is the value returned by the call to f ormat, displayed
in the usual way by the toplevel. Ordinarily a function like format is not
called directly from the toplevel, but used within programs, so the return
value is never seen.

The first argument to format, t, indicates that the output is to be sent to
the default place. Ordinarily this will be the toplevel. The second argument
is a string that serves as a template for output. Within this string, each ~A
indicates a position to be filled, and the ~% indicates a newline. The positions
are filled by the values of the remaining arguments, in order.

The standard function for input is read. When given no arguments, it
reads from the default place, which will usually be the toplevel. Here is a
function that prompts the user for input, and returns whatever is entered:

2.10 VARIABLES 19

(defun askem (s t r i ng)
(format t ""A" s t r i n g)
(read))

It behaves as follows:

> (askem "How old are you? ")

How old are you? 29

29

Bear in mind that read will sit waiting indefinitely until you type some
thing and (usually) hit return. So it's unwise to call read without printing
an explicit prompt, or your program may give the impression that it is stuck,
while in fact it's just waiting for input.

The second thing to know about read is that it is very powerful: read is
a complete Lisp parser. It doesn't just read characters and return them as a
string. It parses what it reads, and returns the Lisp object that results. In the
case above, it returned a number.

Short as it is, the definition of askem shows something we haven't seen
before in a function. Its body contains more than one expression. The body
of a function can have any number of expressions. When the function is
called, they will be evaluated in order, and the function will return the value
of the last one.

In all the sections before this, we kept to what is called "pure" Lisp—that
is, Lisp without side-effects. A side-effect is some change to the state of the
world that happens as a consequence of evaluating an expression. When we
evaluate a pure Lisp expression like (+ 1 2), there are no side-effects; it just
returns a value. But when we call format, as well as returning a value, it
prints something. That's one kind of side-effect.

When we are writing code without side-effects, there is no point in defin
ing functions with bodies of more than one expression. The value of the
last expression is returned as the value of the function, but the values of any
preceding expressions are thrown away. If such expressions didn't have side-
effects, you would have no way of telling whether Lisp bothered to evaluate
them at all.

2.10 Variables

One of the most frequently used operators in Common Lisp is l e t , which
allows you to introduce new local variables:

> (l e t ((x 1) (y 2))
(+ x y))

3

20 WELCOME TO LISP

A l e t expression has two parts. First comes a list of instructions for creating
variables, each of the form (variable expression). Each variable will ini
tially be set to the value of the corresponding expression. So in the example
above, we create two new variables, x and y, which are initially set to 1 and
2, respectively. These variables are valid within the body of the l e t .

After the list of variables and values comes a body of expressions, which
are evaluated in order. In this case there is only one, a call to +. The value of
the last expression is returned as the value of the l e t . Here is an example of
a more selective version of askem written using l e t :

(defun ask-number ()

(format t "Please enter a number. ")

(let ((val (read)))

(if (numberp val)

val

(ask-number))))

This function creates a variable va l to hold the object returned by read.
Because it has a handle on this object, the function can look at what you
entered before deciding whether or not to return it. As you probably guessed,
numberp is a predicate that tests whether its argument is a number.

If the value entered by the user isn't a number, ask-number calls itself.
The result is a function that insists on getting a number:

> (ask-number)
Please enter a number, a

Please enter a number, (ho hum)

Please enter a number. 52

52

Variables like those we have seen so far are called local variables. They
are only valid within a certain context. There is another kind of variable,
called a global variable, that can be visible everywhere.2

You can create a global variable by giving a symbol and a value to
defparameter:

> (defparameter *glob* 99)
•GLOB*

Such a variable will then be accessible everywhere, except in expressions that
create a new local variable with the same name. To avoid the possibility of
this happening by accident, it's conventional to give global variables names

2The real distinction here is between lexical and special variables, but we will not need to
consider this until Chapter 6.

2.11 ASSIGNMENT 21

that begin and end with asterisks. The name of the variable we just created
would be pronounced "star-glob-star".

You can also define global constants, by calling def constant:

(defconstant limit (+ *glob* 1))

There is no'need to give constants distinctive names, because it will cause
an error if anyone uses the same name for a variable. If you want to check
whether some symbol is the name of a global variable or constant, use boundp:

> (boundp '*glob*)
T

2.11 Assignment

In Common Lisp the most general assignment operator is setf . We can use
it to do assignments to either kind of variable:

> (setf *glob* 98)
98
> (l e t ((n 10))

(setf n 2)
n)

2

When the first argument to se t f is a symbol that is not the name of a local
variable, it is taken to be a global variable:

> (setf x (l i s t ' a 'b >c))
(A B C)

That is, you can create global variables implicitly, just by assigning them val
ues. In source files, at least, it is better style to use explicit def parameters.

You can do more than just assign values to variables. The first argument
to setf can be an expression as well as a variable name. In such cases, the
value of the second argument is inserted in the place referred to by the first:

> (setf (car x) ; n)
N
> x
(N B C)

The first argument to se t f can be almost any expression that refers to a
particular place. All such operators are marked as "settable" in Appendix D.

22 WELCOME TO LISP

You can give any (even) number of arguments to setf. An expression of
the form

(setf a b
c d
e f)

is equivalent to three separate calls to setf in sequence:

(setf a b)

(setf c d)

(setf e f)

2.12 Functional Programming

Functional programming means writing programs that work by returning
values, instead of by modifying things. It is the dominant paradigm in Lisp.
Most built-in Lisp functions are meant to be called for the values they return,
not for side-effects.

The function remove, for example, takes an object and a list and returns
a new list containing everything but that object:

> (setf 1st ' (c a r a t))
(C A R A T)
> (remove 'a 1st)
(C R T)

Why not just say that remove removes an object from a list? Because that's
not what it does. The original list is untouched afterwards:

> 1st
(C A R A T)

So what if you really do want to remove something from a list? In Lisp you
generally do such things by passing the list as an argument to some function,
and using setf with the return value. To remove all the as from a list x, we
say:

(setf x (remove ' a x))

Functional programming means, essentially, avoiding setf and things
like it. At first sight it may be difficult to imagine how this is even possible,
let alone desirable. How can one build programs just by returning values?

2.13 ITERATION 23

It would be inconvenient to do without side-effects entirely. However, as
you read further, you may be surprised to discover how few you really need.
And the more side-effects you do without, the better off you'll be.

One of the most important advantages of functional programming is that
it allows interactive testing. In purely functional code, you can test each
function as you write it. If it returns the values you expect, you can be
confident that it is correct. The added confidence, in the aggregate, makes
a huge difference. You have instant turnaround when you make changes
anywhere in a program. And this instant turnaround enables a whole new
style of programming, much as the telephone, as compared to letters, enabled
a new style of communication.

2.13 Iteration

When we want to do something repeatedly, it is sometimes more natural to
use iteration than recursion. A typical case for iteration is to generate some
sort of table. This function

(defun show-squares (s tart end)
(do ((i s tart (+ i 1)))

((> i end) 'done)
(format t "~A ~k~l" i (* i i))))

prints out the squares of the integers from start to end:

> (show-squares 2 5)
2 4
3 9
4 16
5 25
DONE

The do macro is the fundamental iteration operator in Common Lisp.
Like l e t , do can create variables, and the first argument is a list of variable
specifications. Each element of this list can be of the form

{variable initial update)

where variable is a symbol, and initial and update are expressions. Initially
each variable will be set to the value of the corresponding initial, on each
iteration it will be set to the value of the corresponding update. The do
in show-squares creates just one variable, i . On the first iteration i will
be set to the value of s t a r t , and on successive iterations its value will be
incremented by one.

24 WELCOME TO LISP

The second argument to do should be a list containing one or more
expressions. The first expression is used to test whether iteration should
stop. In the case above, the test expression is (> i end). The remaining
expressions in this list will be evaluated in order when iteration stops, and the
value of the last will be returned as the value of the do. So show-squares
will always return done.

The remaining arguments to do comprise the body of the loop. They will
be evaluated, in order, on each iteration. On each iteration the variables are
updated, then the termination test is evaluated, and then (if the test failed) the
body is evaluated.

For comparison, here is a recursive version of show-squares:

(defun show-squares (i end)

(if (> i end)

'done

(progn

(format t M~A ~A~°/,n i (* i i))
(show-squares (+ i 1) end))))

The only thing new in this function is progn. It takes any number of expres
sions, evaluates them in order, and returns the value of the last.

Common Lisp has simpler iteration operators for special cases. To iterate
through the elements of a list, for example, you would be more likely to use
d o l i s t . Here is a function that returns the length of a list:

(defun our-length (1st)

(let ((len 0))

(dolist (obj 1st)

(setf len (+ len 1)))

len))

Here d o l i s t takes an argument of the form (variable expression), followed
by a body of expressions. The body will be evaluated with variable bound
to successive elements of the list returned by expression. So the loop above
says, for each obj in 1st , increment len.

The obvious recursive version of this function would be:

(defun our-length (1st)

(if (null 1st)

0

(+ (our-length (cdr 1st)) 1)))

Or, if the list is empty, its length is zero; otherwise it is the length of the
cdr plus one. This version of our- length is cleaner, but because it's not
tail-recursive (Section 13.2), it won't be as efficient.

2.14 FUNCTIONS AS OBJECTS 25

2.14 Functions as Objects

In Lisp, functions are regular objects, like symbols or strings or lists. If we
give the name of a function to function, it will return the associated object.
Like quote, function is a special operator, so we don't have to quote the
argument:

> (function +)
#<Compiled-Function + 17BA4E>

This strange-looking return value is the way a function might be displayed in
a typical Common Lisp implementation.

Until now we have only dealt with objects that look the same when Lisp
displays them as when we typed them in. This convention does not apply
to functions. Internally, a built-in function like + is likely to be a segment
of machine language code. A Common Lisp implementation may choose
whatever external representation it likes.

Just as we can use ' as an abbreviation for quote, we can use # ' as an
abbreviation for function:

> #' +
#<Compiled-Function + 17BA4E>

This abbreviation is known as sharp-quote.
Like any other kind of object, we can pass functions as arguments. One

function that takes a function as an argument is apply. It takes a function
and a list of arguments for it, and returns the result of applying the function
to the arguments:

> (apply #'+ ' (1 2 3))
6
> (+ 1 2 3)
6

It can be given any number of arguments, so long as the last is a list:

> (apply # ' + 1 2 ' (3 4 5))
15

The function f unca l l does the same thing but does not need the arguments
to be packaged in a list:

> (funcal l #»+ 1 2 3)
6

26 WELCOME TO LISP

WHAT IS LAMBDA?

The lambda in a lambda expression is not an operator. It is just a symbol.0

In earlier dialects of Lisp it had a purpose: functions were represented
internally as lists, and the only way to tell a function from an ordinary list
was to check if the first element was the symbol lambda.
In Common Lisp, you can express functions as lists, but they are repre
sented internally as distinct function objects. So lambda is no longer really
necessary. There would be no inconsistency in requiring that functions be
denoted as

((x) (+ x 100))

instead of

(lambda (x) (+ x 100))

but Lisp programmers were used to beginning functions with the symbol
lambda, so Common Lisp retained it for the sake of tradition.

The def un macro creates a function and gives it a name. But functions
don't have to have names, and we don't need def un to define them. Like
most other kinds of Lisp objects, we can refer to functions literally.

To refer literally to an integer, we use a series of digits; to refer literally to
a function, we use what's called a lambda expression. A lambda expression
is a list containing the symbol lambda, followed by a list of parameters,
followed by a body of zero or more expressions.

Here is a lambda expression representing a function that takes two num
bers and returns their sum:

(lambda (x y)
(+ x y))

The list (x y) is the parameter list, and after it comes the body of the function.
A lambda expression can be considered as the name of a function. Like

an ordinary function nâ ne, a lambda expression can be the first element of a
function call,

> ((lambda (x) (+ x 100)) 1)
101

and by affixing a sharp-quote to a lambda expression, we get the corresponding
function,

2.16 TYPES 27

> (funcall #'(lambda (x) (+ x 100))
1)

101

Among other things, this notation allows us to use functions without naming
them.

2.15 Types

Lisp has an unusually flexible approach to types. In many languages, variables
are what have types, and you can't use a variable without specifying its type.
In Common Lisp, values have types, not variables. You could imagine that
every object had a label attached to it, identifying its type. This approach
is called manifest typing. You don't have to declare the types of variables,
because any variable can hold objects of any type.

Though type declarations are never required, you may want to make them
for reasons of efficiency. Type declarations are discussed in Section 13.3.

The built-in Common Lisp types form a hierarchy of subtypes and super-
types. An object always has more than one type. For example, the number
27 is of type f ixnum, in teger , r a t i o n a l , r e a l , number, atom, and t , in
order of increasing generality. (Numeric types are discussed in Chapter 9.)
The type t is the supertype of all types, so everything is of type t .

The function typep takes an object and a type specifier, and returns true
if the object is of that type:

> (typep 27 ' i n t e g e r)
T

We will mention the various built-in types as we encounter them.

2.16 Looking Forward

In this chapter we have barely scratched the surface of Lisp. And yet a
portrait of a very unusual language is beginning to emerge. To start with, the
language has a single syntax to express all program structure. This syntax is
based on the list, which is a kind of Lisp object. Functions, which are Lisp
objects in their own right, can be expressed as lists. And Lisp is itself a Lisp
program, made almost entirely of Lisp functions no different from the ones
you can define yourself.

Don't worry if the relations between all these ideas are not entirely clear.
Lisp introduces so many novel concepts that it takes some time to get used
to all the new things you can do with it. One thing should be clear at least:
there are some startlingly elegant ideas here.

28 WELCOME TO LISP

Richard Gabriel once half-jokingly described C as a language for writing
Unix.0 We could likewise describe Lisp as a language for writing Lisp. But
this is a different kind of statement. A language that can be written in itself
is fundamentally different from a language good for writing some particular
class of applications. It opens up a new way of programming: as well as
writing your program in the language, you can improve the language to suit
your program. If you want to understand the essence of Lisp programming,
this idea is a good place to begin.

Summary

1. Lisp is an interactive language. If you type an expression into the
toplevel, Lisp will display its value.

2. Lisp programs consist of expressions. An expression can be an atom,
or a list of an operator followed by zero or more arguments. Prefix
syntax means that operators can take any number of arguments.

3. The evaluation rule for Common Lisp function calls: evaluate the
arguments left to right, and pass them to the function denoted by the
operator. The quote operator has its own evaluation rule, which is to
return the argument unchanged.

4. Along with the usual data types, Lisp has symbols and lists. Because
Lisp programs are expressed as lists, it's easy to write programs that
write programs.

5. The three basic list functions are cons, which builds a list; car, which
returns the first element; and cdr, which returns everything after the
first element.

6. In Common Lisp, t represents true and n i l represents false. In a logical
context, anything except n i l counts as true. The basic conditional is
if. The and and or operators resemble conditionals.

7. Lisp consists mainly of functions. You can define new ones with defun.

8. A function that calls itself is recursive. A recursive function should be
considered as a process rather than a machine.

9. Parentheses are not an issue, because programmers read and write Lisp
by indentation.

10. The basic I/O functions are read, which includes a complete Lisp
parser, and format, which generates output based on templates.

EXERCISES 29

11. You can create new local variables with l e t , and global variables with
defparameter.

12. The assignment operator is setf . Its first argument can be an expres
sion.

13. Functional programming, which means avoiding side-effects, is the
dominant paradigm in Lisp.

14. The basic iteration operator is do.

15. Functions are regular Lisp objects. They can be passed as arguments,
and denoted by lambda expressions.

16. In Lisp, values have types, not variables.

Exercises

1. Describe what happens when the following expressions are evaluated:

(a) (+ (- 5 1) (+ 3 7))

(b) (l i s t 1 (+ 2 3))

(c) (i f (l i s t p 1) (+ 1 2) (+ 3 4))

(d) (l i s t (and (l i s t p 3) t) (+ 1 2))

2. Give three distinct cons expressions that return (a b c) .

3. Using car and cdr, define a function to return the fourth element of a
list.

4. Define a function that takes two arguments and returns the greater of
the two.

5. What do these functions do?

(a) (defun enigma (x)

(and (not (null x))

(or (null (car x))

(enigma (cdr x)))))

(b) (defun mystery (x y)

(if (null y)
nil

(if (eql (car y) x)
0

(let ((z (mystery x (cdr y))))
(and z (+ z 1))))))

30 WELCOME TO LISP

6. What could occur in place of the x in each of the following exchanges?

(a) > (car (x (cdr ' (a (b c) d))))
B

(b) > (x 13 (/ 1 0))
13

(c) > (x # > l i s t 1 n i l)
(1)

7. Using only operators introduced in this chapter, define a function that
takes a list as an argument and returns true if one of its elements is a
list.

8. Give iterative and recursive definitions of a function that

(a) takes a positive integer and prints that many dots.

(b) takes a list and returns the number of times the symbol a occurs
ink.

9. A friend is trying to write a function that returns the sum of all the
non-nil elements in a list. He has written two versions of this function,
and neither of them work. Explain what's wrong with each, and give a
correct version:

(a) (defun summit (1s t)
(remove nil 1st)

(apply #' + 1st))

(b) (defun summit (1st)

(let ((x (car 1st)))
(if (null x)

(summit (cdr 1st))
(+ x (summit (cdr 1st))))))

3

Lists

Lists are one of the fundamental data structures in Lisp. In the earliest dialects
they were the only data structure: the name "Lisp" originally stood for "LISt
Processor." But Lisp has long since outgrown this acronym. Common
Lisp is a general-purpose programming language with a wide variety of data
structures.

The development of Lisp programs often echoes the development of Lisp
itself. In the initial version of a Lisp program, you may use a lot of lists.
Then in later versions you may switch to faster, specialized data structures.
This chapter describes the many things you can do with lists, and uses them
to illustrate some general Lisp concepts.

3.1 Conses

Section 2.4 introduced cons, car, and cdr, the primitive list-manipulation
functions. What cons really does is combine two objects into a two-part
object called a cons. Conceptually, a cons is a pair of pointers; the first one
is the car and the second is the cdr.

Conses provide a convenient representation for pairs of any type. The
two halves of a cons can point to any kind of object, including conses. It is
by taking advantage of the latter possibility that we use conses to build lists.

One does not tend to think of lists as pairs, but they can be defined that
way. Any nonempty list can be considered as a pair of the first element and
the rest of the list. Lisp lists are the embodiment of this idea. We use one
half of the cons to point to the first element of the list, and the other to point
to the rest of the list (which is either another cons or ni l) . The convention

31

32 LISTS

a

Figure 3.1: A one-element list.

nil

a b c

Figure 3.2: A list of three elements.

in Lisp has always been to use the car for the first element and the cdr for
the rest of the list. So now car is synonymous with the first element of a list,
and cdr with the rest. Lists are not a distinct kind of object, but conses linked
together in this way.

When we cons something onto n i l ,

> (se t f x (cons ' a n i l))
(A)

the resulting list consists of a single cons, as shown in Figure 3.1. This way
of representing conses is called box notation, because each cons is shown as
a box, with pointers for the car and cdr. When we call car and cdr, we get
back what those pointers point to:

> (car x)
A
> (cdr x)
NIL

When we build a list with multiple elements, we get a chain of conses:

> (se t f y (l i s t ' a 'b ' c))
(A B C)

The resulting structure is shown in Figure 3.2. Now when we ask for the cdr
of this list, it is itself a list of two elements:

3.2 CONSES 33

1

i

1 1 1 1 1 1
1 1 *\ 1 1 1 * 1 1

1 I I I J l 1 1 n j l c

1 1
b c

Figure 3.3: A nested list.

1 1.1

f

J

> (cdr y)
(B C)

In a list of several elements, the car pointers get you the elements, and the cdr
pointers get you the rest of the list.

A list can have any kind of object as an element, including another list:

> (setf z (l i s t ' a (l i s t 'b > c) >d))
(A (B C) D)

When this happens, the underlying structure is as shown in Figure 3.3; the
car pointer of the second cons in the chain also points to a list:

> (car (cdr z))
(B C)

The last two lists we made both have three elements; it just happens that the
second element of z is also a list. Such a list is called a nested list, while a
list like y that doesn't contain other lists as elements is called aflat list.

The function consp returns true if its argument is a cons. So l i s t p could
be defined:

(defun our-listp (x)
(or (null x) (consp x)))

Since everything that is not a cons is an atom, the predicate atom could be
defined:

(defun our-atom (x) (not (consp x)))

Note that n i l is both an atom and a list.

34 LISTS

3.2 Equality

Each time you call cons, Lisp allocates a new piece of memory with room
for two pointers. So if we call cons twice with the same arguments, we get
back two values that look the same, but are in fact distinct objects:

> (eql (cons ' a n i l) (cons ' a n i l))
NIL

It would be convenient if we could also ask whether two lists had the same
elements. Common Lisp provides another equality predicate for this purpose:
equal. While eql1 returns true only if its arguments are the same object,

> (setf x (cons 'a n i l))
(A)
> (eql x x)
T

equal, essentially, returns true if its arguments would print the same:

> (equal x (cons 'a. n i l))
T

This predicate works for other kinds of structures besides lists, but a
version for lists alone might be defined:

(defun our-equal (x y)
(or (eql x y)

(and (consp x)
(consp y)
(our-equal (car x) (car y))
(our-equal (cdr x) (cdr y)))))

As this definition suggests, if some x and y are eql, they are also equal.

3.3 Why Lisp Has No Pointers

One of the secrets to understanding Lisp is to realize that variables have values
in the same way that lists have elements. As conses have pointers to their
elements, variables have pointers to their values.

You may have used other languages in which pointers were manipulated
explicitly. In Lisp you never have to do this, because the language handles
pointers for you. We've already seen how this happens with lists. Something

3.4 WHY LISP HAS NO POINTERS 35

similar happens with variables. Suppose, for example, we set two variables
to the same list:

> (se t f x ' (a b c))
(A B C)
> (setf y x)
(A B C)

What actually happens when we set y to the value of x? The location in
memory associated with the variable x does not contain the list itself, but a
pointer to it. When we assign the same value to y, Lisp copies the pointer, not
the list. (Figure 3.4 shows the situation that results.) So whenever you assign
one variable the value of another, the two variables will have eql values:

> (eql x y)
T

The reason Lisp has no pointers is that every value is conceptually a
pointer. When you assign a value to a variable or store it in a data structure,
what gets stored is actually a pointer to the value. When you ask for the
contents of the data structure or the value of the variable, Lisp returns what
it points to. But all this happens beneath the surface. You can just put values
in structures or "in" variables without thinking about it.

For efficiency, Lisp will sometimes choose to use an immediate repre
sentation instead of a pointer. For example, since a small integer takes no
more space than a pointer, a Lisp implementation may as well handle small
integers directly instead of handling pointers to them. But the bottom line
for you, the programmer, is that by default you can put anything anywhere.
Unless you have made declarations to the contrary, you will be able to store
any kind of object in any kind of data structure, including the structure itself.

'in earlier dialects of Lisp the role of eql was played by eq. In Common Lisp, eq is a stricter
function, and eql is the default predicate for identity. For an explanation of eq, see page 228.

36 LISTS

x = —

y = —

._ i i i i i i I
111 1 H 1 1 1 "1 1 1

a b (

t t 1 J ' JM J

1 nil 1

r

nil

Figure 3.5: Result of copying.

3.4 Building Lists

The function c o p y - l i s t takes a list and returns a copy of it. The new list
will have the same elements, but contained in new conses:

> (se t f x ' (a b c)
y (copy - l i s t x))

(A B C)

Figure 3.5 shows the structure that results; the return value is like a new bus
with the same passengers. We could think of c o p y - l i s t as being defined:

(defun o u r - c o p y - l i s t (1s t)
(i f (atom 1s t)

1s t
(cons (car 1s t) (ou r - copy- l i s t (cdr 1 s t)))))

This definition implies that x and (copy - l i s t x) will always be equal,
and never eql unless x is n i l .

Finally, the function append returns the concatenation of any number of
lists:

> (append ' (a b) >(c d) ' (e))
(A B C D E)

In doing so, it copies all the arguments except the last.

3.5 Example: Compression

As an example, this section shows how to perform a simple form of com
pression on lists. This algorithm goes by the impressive name of run-length

3.5 EXAMPLE: COMPRESSION 37

(defun compress (x)
(if (consp x)

(compr (car x) 1 (cdr x))
x))

(defun compr (e l t n 1s t)
(if (nu l l 1s t)

(l i s t (n - e l t s e l t n))
(l e t ((next (car 1 s t)))

(if (eql next e l t)
(compr e l t (+ n 1) (cdr 1 s t))
(cons (n - e l t s e l t n)

(compr next 1 (cdr 1 s t)))))))

(defun n - e l t s (e l t n)]
(if (> n 1)

(l i s t n e l t)
e l t))

Figure 3.6: Run-length encoding: Compression.

encoding. In restaurants, the algorithm works as follows. A waitress ap
proaches a table of four customers.

"What'll ya have?" she asks.
"I'll have the special," the first customer says.
"Me too," says the second.
"Sounds good," says the third.
Everyone looks at the fourth customer. "I'd like a cilantro souffle," he

says quietly.
With a sniff, the waitress turns on her heel and walks back to the counter.

"Three specials," she shouts to the cook, "and a cilantro souffle."
Figure 3.6 shows how to implement this compression algorithm for lists.

The function compress takes a list of atoms and returns a compressed repre
sentation of it:

> (compress ' (1 1 1 0 1 0 0 0 0 1))
((3 1) 0 1 (4 0) 1)

Whenever the same element occurs several times in a row, the sequence is
replaced by a list indicating the element and the number of occurrences.

Most of the work is done by the recursive compr. This function takes
three arguments: e l t , the element we last saw; n, the number of times in a

38 LISTS

(defun uncompress
(i f (nu l l 1s t)

n i l
(l e t ((e l t (

(r e s t
(i f (consf

(1s t)

'car 1 s t))
(uncompress (cdr 1 s t))))

) e l t)
(append (apply # ' l i s t - o f e l t)

(cons

(defun l i s t - o f (n

1 (lf (zerop n)
n i l

r e s t)
e l t r e s t)))))

e l t)

(cons e l t (l i s t - o f (- n 1) e l t)))) 1

Figure 3 / 7: Run-length encoding: Expansion.

row we've seen it; and 1st , the part of the list we've yet to examine. If there
is nothing left to examine, we just call n - e l t s to get something representing
n e l t s . If the first element of 1st is still e l t , we increment n and keep going.
Otherwise we get a compressed list of what we've seen so far, and cons that
onto whatever compr returns for the rest of the list.

To reconstitute a compressed list, we call uncompress (Figure 3.7):

> (uncompress ' ((3 1) 0 1 (4 0) 1))
(1 1 1 0 1 0 0 0 0 1)

This function works recursively through the compressed list, copying atoms
verbatim and expanding lists by calling l i s t - o f :

> (l i s t - o f 3 'ho)
(HO HO HO)

We don't really need to write l i s t - o f . The built-in make- l i s t can do the
same thing—but it uses keyword arguments, which haven't been introduced
yet.

In this and other ways, the code in Figures 3.6 and 3.7 is not written the
way an experienced Lisp programmer would write it. It's inefficient, it does
not compress as tightly as it could, and it only works for lists of atoms. Within
a few chapters we'll have seen techniques that would make it possible to fix
all these problems.

3.6 ACCESS 39

LOADING PROGRAMS

The code in this section is our first example of a substantial program.
When one wants to write functions of more than a couple lines, it's usual
to type the code into a file, and then use load to get Lisp to read the
definitions. If we stored the code in Figures 3.6 and 3.7 in a file called
"compress. l i s p " , then typing

(load "compress.lisp")

into the toplevel would have the same effect, more or less, as typing the
expressions in that file into the toplevel directly.
Note: In some implementations, the extension for Lisp files will be " . l sp"
rather than " . l i s p " .

3.6 Access

Common Lisp has additional access functions defined in terms of car and
cdr. To find the element at a given position in a list we call nth,

> (nth 0 ' (a b c))
A

and to find the nth cdr, we call nthcdr:

> (nthcdr 2 ' (a b c))
(C)

Both nth and nthcdr are zero-indexed; that is, the elements are numbered
starting at zero rather than one. In Common Lisp, whenever you use a number
to refer to an element of a data structure, the numbering starts at zero.

The two functions do almost the same thing; n th is equivalent to car of
nthcdr. Without error-checking, nthcdr could be defined as:

(defun our-nthcdr (n 1st)

(if (zerop n)

1st

(our-nthcdr (- n 1) (cdr 1st))))

The function zerop just returns true if its argument is zero.
The function l a s t returns the last cons in a list:

> (l a s t ' (a b c))
(C)

40 LISTS

This is not the same as getting the last element. To get the last element of a
list, you would take the car of l a s t .

Common Lisp defines f i r s t through t en th as functions that retrieve
the corresponding element of a list. These functions are not zero-indexed:
(second x) is equivalent to (nth 1 x).

In addition, Common Lisp defines functions like caddr, which is an
abbreviation for car of cdr of cdr. All the functions of the form c;tr, where
x is a string of up to four as or ds, are defined in Common Lisp. With the
possible exception of cadr, which refers to the second element, it is not a
good idea to use them in code that anyone else is going to read.

3.7 Mapping Functions

Common Lisp provides several functions for calling functions on the elements
of a list. The most frequently used is mapcar, which takes a function and
one or more lists, and returns the result of applying the function to elements
taken from each list, until some list runs out:

> (mapcar #'(lambda (x) (+ x 10))
' (1 2 3))

(11 12 13)
> (mapcar # ' l i s t

' (a b c)
' (1 2 3 4))

((A 1) (B 2) (C 3))

The related mapl is t takes the same arguments, but calls the function on
successive cdrs of the lists:

> (maplist #'(lambda (x) x)
' (a b c))

((A B C) (B C) (C))

Other mapping functions include mapc, which is discussed on page 88,
and mapcan, which is discussed on page 202.

3.8 Trees

Conses can also be considered as binary trees, with the car representing the
right subtree and the cdr the left. For example, the list

(a (b c) d)

3.8 TREES 41

is also the tree represented in Figure 3.8. (If you rotate it 45° counter
clockwise, you'll see that it is the same as Figure 3.3.)

Common Lisp has several built-in functions for use with trees. For
example, copy-tree takes a tree and returns a copy of it. It might be
defined:

(defun our-copy-tree (tr)

(if (atom tr)

tr

(cons (our-copy-tree (car tr))

(our-copy-tree (cdr tr)))))

Compare this to the sketch of c o p y - l i s t on page 36; copy- t ree copies
both the car and cdr of each cons, while c o p y - l i s t copies only the cdr.

Binary trees without interior nodes are not useful for much. Common
Lisp includes functions for operating on trees not because one needs trees as
such, but because one needs a way to do something to a list and all the lists
within it. For example, suppose we have a list like

(and (integerp x) (zerop (mod x 2)))

and we want to substitute y for x throughout. It won't do to call s u b s t i t u t e ,
which replaces elements in a sequence:

> (s u b s t i t u t e 'y 'x ' (and (in tegerp x) (zerop (mod x 2))))
(AND (INTEGERP X) (ZEROP (MOD X 2)))

42 LISTS

This call has no effect because the list has three elements, and none of them
are x. What we need here is subst , which replaces elements in a tree:

> (subst 'y 'x '(and (integerp x) (zerop (mod x 2))))
(AND (INTEGERP Y) (ZEROP (MOD Y 2)))

If we define a version of subst , it comes out looking a lot like copy-tree:

(defun our-subst (new old t r e e)
(i f (eql t r e e old)

new
(i f (atom t r e e)

t r e e
(cons (our-subst new old (car t r e e))

(our-subst new old (cdr t r e e))))))

Functions that operate on trees usually have this form, recursing down both
the car and cdr. Such functions are said to be doubly recursive.

3.9 Understanding Recursion

Students learning about recursion are sometimes encouraged to trace all the
invocations of a recursive function on a piece of paper. (A trace of a recursive
function can be seen on page 288.) This exercise could be misleading: a
programmer defining a recursive function usually does not think explicitly
about the sequence of invocations that results from calling it.

If one always had to think of a program in such terms, recursion would
be burdensome, not helpful. The advantage of recursion is precisely that it
lets us view algorithms in a more abstract way. You can judge whether or
not a recursive function is correct without considering all the invocations that
result when the function is actually called.

To see if a recursive function does what it's supposed to, all you have to
ask is, does it cover all the cases? For example, here is a recursive function
for finding the length of a list:

(defun len (1st)
(if (null 1st)

0
(+ (len (cdr 1st)) 1)))

We can assure ourselves that this function is correct by verifying two things:

1. That it works for lists of length 0.

3.10 SETS 43

2. Given that it works for lists of length n, that it also works for lists of
length n+1.

If we can establish both points, then we know that the function is correct for
all possible lists.

Our definition obviously satisfies the first point: if 1st is n i l , the function
immediately returns 0. Now suppose that the function works for lists of length
n. We give it a list of length n-f-1. The definition says that the function will
return the len of the cdr of this list, plus 1. The cdr is a list of length n. We
know by our assumption that its len is n. Thus the len of the whole list is
n+1.

This is all we need to know. The secret to understanding recursion is
a lot like the secret for dealing with parentheses. How do you see which
parenthesis matches which? You don't have to. How do you visualize all
those invocations? You don't have to.

With more complicated recursive functions, there might be more cases,
but the procedure is the same. For example, with our-copy- t ree (page 41)
we would have to consider three cases: atoms, single conses, and trees of
n+1 conses.

The first case (here, lists of length 0) is known as the base case. When a
recursive function doesn't behave as you intended, it is usually because the
base case is wrong. It is a common error to omit the base case entirely, as in
this incorrect definition of member:2

(defun our-member (obj 1s t) ; wrong
(if (eql (car 1s t) obj)

1st
(our-member obj (cdr 1 s t))))

We need the initial n u l l test to ensure that the recursion stops when it gets to
the end of the list without finding what it's looking for. This version would
go into an infinite loop if the object we sought wasn't in the list. Appendix A
looks at this kind of problem in more detail.

Being able to judge whether or not a recursive function is correct is only
the first half of understanding recursion. The other half is being able to write
a recursive function that does what you want. Section 6.9 deals with this
question.

3.10 Sets

Lists are a good way to represent small sets. Every element of a list is a
member of the set it represents:

2The ; wrong in this definition is a comment. In Lisp code, everything from a semicolon to
the end of the line is ignored.

44 LISTS

> (member 'b ; (a b c))
(B C)

When member returns true, instead of simply returning t , it returns the part of
the list beginning with the object it was looking for. Logically, a cons serves
just as well as t , and this way the function returns more information.

By default, member compares objects using eql. You can override this
default by using something called a keyword argument. Many Common Lisp
functions take one or more keyword arguments. The unusual thing about these
arguments is that they are not matched with the corresponding parameters by
their position, but by special tags, called keywords, that must precede them
in the call. A keyword is a symbol preceded by a colon.

One of the keyword arguments accepted by member is a : t e s t argument.
If you pass some function as the : t e s t argument in a call to member, then
that function will be used to test for equality instead of eql. So if we want to
find a member of a list that is equal to a given object, we might say:

> (member ' (a) ' ((a) (z)) : t e s t # 'equal)
((A) (Z))

Keyword arguments are always optional. If any are included in a call, they
come last; if more than one keyword argument is given, their order doesn't
matter.

The other keyword argument accepted by member is a : key argument.
By providing this argument you can specify a function to be applied to each
element before comparison:

> (member ' a ; ((a b) (e d)) :key # ' c a r)
((A B) (C D))

In this example, we asked if there was an element whose car was a.
If we wanted to give both keyword arguments, we could give them in

either order. The following two calls are equivalent:

> (member 2 '((1) (2)) :key #;car :test #'equal)
((2))
> (member 2 >((1) (2)) :test #'equal :key #>car)
((2))

Both ask if there is an element whose car is equal to 2.
If we want to find an element satisfying an arbitrary predicate—like oddp,

which returns true for odd integers—we can use the related member-if:

> (member-if #>oddp ' (2 3 4))
(3 4)

3.11 SEQUENCES 45

We could imagine a limited version of member-if being written:

(defun our-member-if (fn 1s t)
(and (consp 1s t)

(i f (funcal l fn (car 1 s t))
1st
(our-member-if fn (cdr 1 s t)))))

The function adjoin is like a conditional cons. It takes an object and a
list, and conses the object onto the list only if it is not already a member:

> (adjoin 'b '(a b c))
(A B C)
> (adjoin }z '(a b c))
(Z A B C)

In the general case it takes the same keyword arguments as member.
The operations of set union, intersection, and complement are imple

mented by the functions union, i n t e r s e c t i o n , and se t -d i f f e rence .
These functions expect exactly two lists (but also take the same keyword
arguments as member).

> (union ' (a b c) '(c b s))
(A C B S)
> (i n t e r s e c t i o n ' (a b c) ' (b b c))
(B C)
> (se t -d i f f e rence ' (a b c d e) ' (b e))
(A C D)

Since there is no notion of ordering in a set, these functions do not necessarily
bother to preserve the order of elements found in the original lists. The call
to se t -d i f f e rence might just as well have returned (d c a) , for example.

3.11 Sequences

Another way to think of a list is as a series of objects in a particular order.
In Common Lisp, sequences include both lists and vectors. This section
introduces some of the sequence functions that are especially applicable to
lists. Operations on sequences are covered in more detail in Section 4.4.

The function length returns the number of elements in a sequence:

> (length >(a b c))
3

46 LISTS

We wrote a version of this function (limited to lists) on page 24.
To copy part of a sequence, we use subseq. The second argument

(required) is the position of the first element to be included, and the third
argument (optional) is the position of the first element not to be included.

> (subseq ' (a b c d) 1 2)
(B)
> (subseq }(a b c d) 1)
(B C D)

If the third argument is omitted, the subsequence goes all the way to the end
of the original sequence.

The function reverse returns a sequence with the same elements as its
argument, but in the reverse order:

> (reverse >(a b c))
(C B A)

A palindrome is a sequence that reads the same in either direction—for
example, (a b b a) . If a palindrome has an even number of elements, then
the second half will be a mirror of the first. Using length, subseq, and
reverse , we can define a function

(defun mirror? (s)

(let ((len (length s)))

(and (evenp len)

(let ((mid (/ len 2)))

(equal (subseq s 0 mid)

(reverse (subseq s mid)))))))

that detects such palindromes:

> (mirror? ' (a b b a))
T

Common Lisp has a built-in sort function called sor t . It takes a sequence
and a comparison function of two arguments, and returns a sequence with the
same elements, sorted according to the function:

> (so r t ' (0 2 1 3 8) #>>)
(8 3 2 1 0)

You have to be careful when using sor t , because it's destructive. For
efficiency reasons, so r t is allowed to modify the sequence given to it as
an argument. So if you don't want your original sequence modified, pass a
copy.0

Using so r t and nth, we can write a function that takes an integer n, and
returns the nth greatest element of a list:

3.12 STACKS 47

(defun nthmost (n 1s t)
(nth (- n 1)

(sor t (copy - l i s t 1s t) # ' >)))

We subtract one from the integer because nth is zero-indexed, but it would
be unintuitive if nthmost were.

> (nthmost 2 ' (0 2 1 3 8))
3

With some effort we could write a more efficient version of this function.
The functions every and some take a predicate and one or more se

quences. When given just one sequence, they test whether the elements
satisfy the predicate:

> (every #'oddp ' (1 3 5))
T
> (some #'evenp ' (1 2 3))
T

If they are given more than one sequence, the predicate must take as many
arguments as there are sequences, and arguments are drawn one at a time
from all the sequences:

> (every #>> ' (1 3 5) ' (0 2 4))
T

If the sequences are of different lengths, the shortest one determines the
number of tests performed.

3.12 Stacks

The representation of lists as conses makes it natural to use them as pushdown
stacks. This is done so often that Common Lisp provides two macros for the
purpose: (push x y) pushes x onto the front of the list v, and (pop x)
removes and returns the first element of the list x.

Both are defined in terms of setf . It's easy to translate calls if the
arguments are constants or variables. The expression

(push obj 1s t)

is equivalent to

(setf 1st (cons obj 1 s t))

48 LISTS

y _ -.•<».

F i g u r e 3 . 9

1 1 ^ 1 1 i 1
1 —1 ^ 1 j 1 nil j

\ 1
a b

: Effect of push and pop.

and the expression

(pop 1s t)

is equivalent to

(let ((x (car 1st)))

(setf 1st (cdr 1st))

x)

So, for example:

> (setf x >(b))

(B)

> (push 'a x)

(A B)

> x

(A B)

> (setf y x)

(A B)

> (pop x)

A

> x

(B)

> y
(A B)

All this follows from the equivalences given above. Figure 3.9 shows the
structure that remains after these expressions are evaluated.

You could use push to define an iterative version of reverse for lists:

(defun our - reverse (1s t)
(l e t ((ace n i l))

(d o l i s t (e l t 1s t)
(push e l t ace))

ace))

3.13 DOTTED LISTS 49

In this version we start with an empty list and push each element of 1st onto
it. When we're finished, the last element of 1st will be on the front.

The pushnew macro is a variant of push that uses adjoin instead of
cons:

> (l e t ((x ' (a b)))
(pushnew 'c x)
(pushnew 'a x)
x)

(C A B)

Here, c gets pushed onto the list, but a, because it is already a member, does
not.

3.13 Dotted Lists

The kind of lists that can be built by calling l i s t are more precisely known
as proper lists. A proper list is either n i l , or a cons whose cdr is a proper list.
That is, we could define a predicate that would return true only for proper
lists as:3

(defun proper-list? (x)

(or (null x)

(and (consp x)

(proper-list? (cdr x)))))

All the lists we've built so far have been proper lists.
Conses are not just for building lists, however. Whenever you need a

structure with two fields you can use a cons. You will be able to use car to
refer to the first field and cdr to refer to the second.

> (setf pa i r (cons ' a >b))
(A . B)

Because this cons is not a proper list, it is displayed in dot notation. In dot
notation, the car and cdr of each cons are shown separated by a period. The
structure of this cons is shown in Figure 3.10.

A cons that isn't a proper list is called a dotted list. This is not a very
good name, because conses that aren't proper lists are usually not meant to
represent lists at all: (a . b) is just a two-part data structure.

You could express proper lists in dot notation as well, but when Lisp
displays a proper list, it will always use regular list notation:

3This description is a little misleading, because the function would not return n i l for every
thing that wasn't a proper list. If given a cdr-circular list, it would fail to terminate. Circular lists
are covered in Section 12.7.

50 LISTS

a b

Figure 3.10: A cons used as a pair.

a b e d

Figure 3.11: A dotted list.

> ' (a . (b . (c . n i l)))
(A B C)

Incidentally, notice the correspondence between the way this list looks in dot
notation and the way it looks in box notation in Figure 3.2.

There is an intermediate form of notation, between list notation and pure
dot notation, for dotted lists whose cdrs are conses:

> (cons 'a (cons 'b (cons ' c Jd)))
(A B C . D)

Such conses are displayed like proper lists, except that the final cdr is shown,
preceded by a period. The structure of this list is shown in Figure 3.11; notice
how similar it is to the structure shown in Figure 3.2.

So there are actually four ways you could denote the list (a b),

(a . (b . n i l))
(a . (b))
(a b . n i l)
(a b)

though when Lisp displays this list, it will always use the latter form.

3.75 ASSOC-LISTS 51

3.14 Assoc-lists

It is also natural to use conses to represent mappings. A list of conses is
called an assoc-list or alist. Such a list could represent a set of translations,
for example:

> (setf t r a n s ' ((+ . "add") (- . " s u b t r a c t ")))
((+ . "add") (- . " sub t r ac t "))

Assoc-lists are slow, but convenient in the first stages of a program. Common
Lisp has a built-in function, assoc, for retrieving the pair associated with a
given key:

> (assoc '+ t r ans)
(+ . "add")
> (assoc ' * t r ans)
NIL

If assoc doesn't find what it's looking for, it returns n i l .
We could write a limited version of assoc as:

(defun our-assoc (key a l i s t)
(and (consp a l i s t)

(l e t ((pa i r (car a l i s t)))
(i f (eql key (car p a i r))

p a i r
(our-assoc key (cdr a l i s t))))))

Like member, the real assoc takes keyword arguments, including : t e s t and
:key. Common Lisp also defines an assoc-if , which is to assoc what
member-if is to member.

3.15 Example: Shortest Path

Figure 3.12 contains a program for finding the shortest path through a network.
The function s h o r t e s t - p a t h takes a start node, a destination node, and a
network, and returns the shortest path, if there is one.

In this example, nodes are represented as symbols, and networks are
represented as assoc-lists with elements of the form

{node . neighbors)

So the minimal network shown in Figure 3.13 would be represented as

(setf min ' ((a b c) (b c) (c d)))

52 LISTS

(defun shortest-path (start end net)
(bfs end (list (list start)) net))

(defun bfs (end queue net)
(if (null queue)

nil
(let ((path (car queue)))
(let ((node (car path)))
(if (eql node end)

(reverse path)
(bfs end

(append (cdr queue)
(new-paths path node net))

net))))))

(defun new-paths (path node net)
(mapcar #'(lambda (n)

(cons n path))
(cdr (assoc node net))))

Figure 3.12: Breadth-first search

and to find the nodes we can reach from a we would say:

> (cdr (assoc ' a min))
(B C)

The program in Figure 3.12 works by searching the network breadth-first.
To search breadth-first you have to maintain a queue of unexplored nodes.
Each time you get to a node, you check to see if it is the one you want. If not,
you append each of its children to the end of the queue, then take a node from

3.16 EXAMPLE: SHORTEST PATH 53

the front of the queue and continue the search there. By always putting deeper
nodes at the end of the queue, we ensure that the network gets searched one
layer at a time.

The code in Figure 3.12 represents a slight complication of this idea. We
don't just want to find the destination, but to keep a record of how we got
there. So instead of maintaining a queue of nodes, we maintain a queue of
paths we've followed, each of which is a list of nodes. When we take an
element from the queue to continue the search, it will not be a node but a list,
with the node on the front.

The function bf s does the searching. Initially there will be only one
element in the queue, a path representing the start node with no history. So
sho r t e s t -pa th calls bf s with (l i s t (l i s t s t a r t)) as the initial queue.

Within bf s the first thing to consider is whether there are any nodes left
to explore. If the queue is empty, bf s returns n i l to indicate that no path
could be found. If there are still nodes to search, bf s looks at the element on
the front of the queue. If the car is the node we're looking for, we've found
a path and we just return it, reversing for readability. If we haven't found the
node we're looking for, it might still be a descendant of the current node, so
we add each of its children (or paths for each of them) to the end of the queue.
Then we call bf s recursively to continue searching the rest of the queue.

Because bf s searches breadth-first, the first path it finds will be the
shortest, or one of the shortest:

> (shortest-path 'a 'd min)
(A C D)

Here is what the queue looks like in successive calls to bf s:

((A))
((B A) (C A))
((C A) (C B A))
((C B A) (DC A))
((D C A) (D C B A))

The second element in a queue becomes the first element in the next queue.
The first element in a queue becomes the cdr of any new elements at the end
of the next queue.

The code in Figure 3.12 is not the fastest way to search a network, but
it does give an idea of the versatility of lists. In this simple program we use
lists in three distinct ways: we use a list of symbols to represent a path, a list
of paths to represent the queue used in breadth-first search,4 and an assoc-list
to represent the network itself.

4Section 12.3 will show how to implement queues more efficiently.

54 LISTS

3.16 Garbage

Lists can be slow for several reasons. They offer sequential instead of random
access, so retrieving a given element takes longer in a list than an array, for
the same reason that it takes longer to find something on a tape than on a
disk. Internally, conses tend to be represented as pointers, so traversing a
list means traversing a series of pointers, instead of simply incrementing an
index, as in an array. But these two costs can be small compared to the cost
of allocating and recycling cons cells.

Automatic memory management is one of Lisp's most valuable features.
The Lisp system maintains a segment of memory called the heap. The system
keeps track of unused memory in the heap and doles it out as new objects
are created. The function cons, for example, returns a newly allocated cons.
Allocating memory from the heap is sometimes generically known as consing.

If such memory were never freed, Lisp would run out of space for new
objects and have to shut down. So the system must periodically search
through the heap, looking for memory that is no longer needed. Memory that
is no longer needed is called garbage, and the scavenging operation is called
garbage collection, or GC.

Where does garbage come from? Let's create some:

> (setf 1st (list 'a >b }c))
(A B C)
> (setf 1st nil)
NIL

Initially we call l i s t , which calls cons, which allocates new cons cells on
the heap. In this case we made three. After we set 1st to n i l , we no longer
have any way of reaching the old value of 1st , the list (a b c) .5

Since we have no way of reaching this list, it might as well not exist.
Objects that we no longer have any way of reaching are garbage. The system
can safely reuse these three cons cells.

This way of managing memory is a great convenience to the programmer.
You never have to allocate or deallocate memory explicitly. And this means
that you never have to deal with the bugs that come from doing so. Memory
leaks and dangling pointers are simply impossible in Lisp.

But, like any technical advance, automatic memory management can
work against you if you're not careful. The costs associated with using and
recycling heap space are sometimes referred to simply as the costs of consing.
This is reasonable, because unless a program never throws anything away,

5 Actually, we do have a way of reaching the list, for a bit. The globals *, **, and *** are
always set to the the last three values returned to the toplevel. These variables are useful in
debugging.

SUMMARY 55

most of those conses are going to end up as garbage sooner or later. The
trouble with consing is, allocating storage and scavenging memory to reclaim
it can be expensive compared to the routine operations of a program. Recent
research has produced greatly improved garbage collection algorithms, but
consing will always cost something, and in some existing Lisp systems, it is
quite expensive.

Unless you're careful, it's easy to write programs that cons excessively.
For example, remove has to copy all the conses up to the last element
removed from a list. You can avoid some of this consing by using destructive
functions, which try to re-use most of the structure of the lists passed to them
as arguments. Destructive functions are discussed in Section 12.4.

While it's easy to write programs that cons a lot, it's possible to write
programs that don't cons at all. The typical approach would be to write the
initial version of a program in a purely functional style and using a lot of
lists. As the program evolves, you can use destructive operations and/or other
data structures in critical portions of the code. But it's hard to give general
advice about consing, because some Lisp implementations now do memory
management so well that it can sometimes be faster to cons than not to. The
whole issue is covered in more detail in Section 13.4.

Consing is ok in prototypes and experiments, at least. And if you take
advantage of the flexibility that lists give you in the early stages of a program,
you're more likely to produce something that survives to the later stages.

Summary

1. A cons is a two-part data structure. Lists are made of conses linked
together.

2. The predicate equal is less strict than eql . Essentially, it returns true
if its arguments print the same.

3. All Lisp objects behave like pointers. You never have to manipulate
pointers explicitly.

4. You can copy lists with copy- l i s t , and join their elements with
append.

5. Run-length encoding is a simple compression algorithm for use in
restaurants.

6. Common Lisp has a variety of access functions defined in terms of car
and cdr.

7. Mapping functions apply a function to successive elements, or succes
sive tails, of a list.

56 LISTS

8. Operations on nested lists are sometimes considered as operations on
trees.

9. To judge a recursive function, you only have to consider whether it
covers all the cases.

10. Lists can be used to represent sets. Several built-in functions view lists
this way.

11. Keyword arguments are optional, and are identified not by position, but
by symbolic tags that precede them.

12. Lists are a subtype of sequences. Common Lisp has a large number of
sequence functions.

13. A cons that isn't a proper list is called a dotted list.

14. Lists with conses as elements can be used to represent mappings. Such
lists are called assoc-lists.

15. Automatic memory management saves you from dealing with memory
allocation, but generating excessive garbage can make programs slow.

Exercises

1. Show the following lists in box notation:

(a) (a b (e d))

(b) (a (b (c (d))))

(c) (((a b) c) d)

(d) (a (b . c) . d)

2. Write a version of union that preserves the order of the elements in
the original lists:

> (new-union ' (a b c) ' (b a d))
(A B C D)

3. Define a function that takes a list and returns a list indicating the
number of times each (eql) element appears, sorted from most common
element to least common:

> (occurrences ' (a b a d a c d e a))
((A . 4) (C . 2) (D . 2) (B . 1))

3.16 EXERCISES 57

4. Why does (member ' (a) ' ((a) (b))) return n i l ?

5. Suppose the function pos+ takes a list and returns a list of each element
plus its position:

> (pos+ ' (7 5 1 4))
(7 6 3 7)

Define this function using (a) recursion, (b) iteration, (c) mapcar.

6. After years of deliberation, a government commission has decided that
lists should be represented by using the cdr to point to the first element
and the car to point to the rest of the list. Define the government
versions of the following functions:

(a) cons

(b) l i s t

(c) length (for lists)

(d) member (for lists; no keywords)

7. Modify the program in Figure 3.6 to use fewer cons cells. (Hint: Use
dotted lists.)

8. Define a function that takes a list and prints it in dot notation:

> (showdots ' (a b c))
(A . (B . (C . NIL)))
NIL

9. Write a program to find the longest finite path through a network
represented as in Section 3.15. The network may contain cycles.

4

Specialized Data Structures

The preceding chapter discussed the list, Lisp's most versatile data structure.
This chapter shows how to use Lisp's other data structures: arrays (including
vectors and strings), structures, and hash tables. They may not be as flexible
as lists, but they can make access faster, and take up less space.

Common Lisp has one other data structure: the instance. Instances are
covered in Chapter 11, which describes CLOS.

4.1 Arrays

In Common Lisp, you can make an array by calling make-array with a list
of dimensions as the first argument. To make a 2x3 array we would say:

> (se t f a r r (make-array '(2 3) : i n i t i a l - e l e m e n t n i l))
#<Simple-Array T (2 3) BFC4FE>

Arrays in Common Lisp can have at least seven dimensions, and each dimen
sion can have at least 1023 elements.

The : i n i t i a l - e l e m e n t argument is optional. If it is provided, the
whole array will be initialized to that value. The consequences of trying to
retrieve an element of an uninitialized array are undefined.

To retrieve an array element we call aref. As usual for Common Lisp
access functions, aref is zero-indexed:

> (aref a r r 0 0)
NIL

58

4.2 ARRAYS 59

To replace some element of an array, we use se t f with aref:

> (setf (aref a r r 0 0) 'b)
B
> (aref a r r 0 0)
B

To denote a literal array, we use the #na syntax, where n is the number of
dimensions in the array. For example, we could denote an array equivalent to
a r r as:

#2a((b n i l n i l) (n i l n i l n i l))

If the global *pr in t - a r ray* is t , arrays will be displayed in this form:

> (setf *pr in t -a r ray* t)
T
> a r r
#2A((B NIL NIL) (NIL NIL NIL))

If you want just a one-dimensional array, you can give an integer instead
of a list as the first argument to make-array:

> (setf vec (make-array 4 : i n i t i a l - e l e m e n t n i l))
#(NIL NIL NIL NIL)

A one-dimensional array is also called a vector. You can create and fill one
in a single step by calling vector, which will return a vector of whatever
arguments you give it:

> (vector "a" 'b 3)
#(*'a" B 3)

A literal vector can be expressed using this syntax, just as a literal array can
be expressed using #na.

You can use aref for vector access, but there is a faster function called
svref for use with vectors.

> (svref vec 0)
NIL

The "sv" in the name stands for "simple vector," which is what all vectors are
by default.1

1A simple array is one that is neither adjustable, nor displaced, nor has a fill-pointer. Arrays
are simple by default. A simple vector is a simple array of one dimension that can contain
elements of any type.

60 SPECIALIZED DATA STRUCTURES

(defun bin-search (obj vec)
(let ((len (length vec)))
(and (not (zerop len))

(finder obj vec 0 (- len 1)))))

(defun finder (obj vec start end)

(let ((range (- end start)))

(if (zerop range)

(if (eql obj (aref vec start))
obJ
nil)

(let ((mid (+ start (round (/ range 2)))))
(let ((obj2 (aref vec mid)))

(if (< obj obj2)

(finder obj vec start (- mid

! (if (> obj obj2)

! (finder obj vec (+ mid 1)
obj)))))))

Figure 4.1: Searching a sorted vector.

D)

end)

4.2 Example: Binary Search

As an example, this section shows how to write a function to search for an
object in a sorted vector. If we know that a vector is sorted, we can do better
than f ind (page 65), which must look at each element in turn. Instead we
jump right into the middle of the vector. If the middle element is the object
we're looking for, then we're done. Otherwise, we continue searching in
either the left or right half of the vector, depending on whether the object was
less than or greater than the middle element.

Figure 4.1 contains a function that works this way. Two functions actually:
b in-search sets the initial bounds and sends control to f inder, which
searches for obj between the s t a r t t h and endth elements of a vector vec.

If the range to be searched has narrowed to one element, then f inder
returns that element if it is obj, and n i l otherwise. If the range includes
several elements, we find the middle (round returns the nearest integer to its
argument) and look at the element there (obj 2). If obj is less than obj 2, the
search continues recursively in the left half of the vector. If it's greater, the
search continues in the right half of the vector. The only remaining alternative
is that obj = obj 2, in which case we've found what we were looking for, and
simply return it.

4.3 STRINGS AND CHARACTERS 61

COMMENTING CONVENTIONS

In Common Lisp code, anything following a semicolon is treated as a
comment. Some Lisp programmers use multiple semicolons to indicate the
level of the comment: four semicolons in a heading, three in a description
of a function or macro, two to explain the line below, and one when
a comment is on the same line as the code it applies to. Using this
convention, Figure 4.1 might begin:

;;;; Utilities for operations on sorted vectors.

;;; Finds an element in a sorted vector.

(defun bin-search (obj vec)

(let ((len (length vec)))

;; if a real vector, send it to finder

(and (not (zerop len)) ; returns nil if empty

(finder obj vec 0 (- len 1)))))

For extensive comments, it may be preferable to use the # I . . . I # read-
macro. Everything between a # I and I # is ignored by read.0

If we insert the following line at the beginning of f inder ,

(format t "~A~°/8" (subseq vec s t a r t (+ end 1)))

then we can watch as the number of elements left to be searched is halved in
each step:

> (bin-search 3 #(0 1 2 3 4 5 6 7 8 9))
(0 1 2 3 4 5 6 7 8 9)
#(0 12 3)
#(3)
3

4.3 Strings and Characters

Strings are vectors of characters. We denote a constant string as a series of
characters surrounded by double-quotes, and an individual character c as #\c.

Each character has an associated integer—usually, but not necessarily,
the ASCH number. In most implementations, the function char-code returns

62 SPECIALIZED DATA STRUCTURES

the number associated with a character, and code-char returns the character
associated with a number.0

The functions char< (less than), char<= (less than or equal), char=
(equal), char>= (greater than or equal), char> (greater than), and char/=
(different) compare characters. They work like the numeric comparison
operators described on page 146.

> (so r t "elbow" # 'char<)
"below"

Because strings are vectors, both sequence functions and array functions work
on them. You could use aref to retrieve elements, for example,

> (aref "abc" 1)
#\b

but with a string you can use the faster char:

> (char "abc" 1)
#\b

You can use se t f with char (or aref) to replace elements:

> (l e t ((s t r (copy-seq "Merl in")))
(se t f (char s t r 3) #\k)
s t r)

"Merkin"

If you want to compare two strings, you can use the general equal, but
there is also a function s t r i n g - e q u a l that ignores case:

> (equal "fred" "fred")
T
> (equal "fred" "Fred")
NIL
> (string-equal "fred" "Fred")
T

Common Lisp provides a large number of functions for comparing and ma
nipulating strings. They are listed in Appendix D, starting on page 364.

There are several ways of building strings. The most general is to use
format. Calling format with n i l as the first argument makes it return as a
string what it would have printed:

> (format nil "~A or ~A" "truth" "dare")
"truth or dare"

4.4 SEQUENCES 63

But if you just want to join several strings together, you can use concatenate,
which takes a symbol indicating the type of the result, plus one or more
sequences:

> (concatenate ' s tr ing "not " "to worry")
"not to worry"

4.4 Sequences

In Common Lisp the type sequence includes both lists and vectors (and
therefore strings). Some of the functions that we have been using on lists are
actually sequence functions, including remove, length, subseq, reverse,
sort, every, and some. So the function that we wrote on page 46 would
also work with other kinds of sequences:

> (mirror? "abba")
T

We've already seen four functions for retrieving elements of sequences:
nth for lists, aref and svref for vectors, and char for strings. Common
Lisp also provides a function e l t that works for sequences of any kind:

> (e l t ' (a b c) 1)
B

For sequences of specific types, the access functions we've already seen
should be faster, so there is no point in using e l t except in code that is

^supposed to work for sequences generally.
Using e l t , we could write a version of mirror? that would be more

efficient for vectors:

(defun mirror? (s)

(let ((len (length s)))

(and (evenp len)

(do ((forward 0 (+ forward 1))

(back (- len 1) (- back 1)))

((or (> forward back)

(not (eql (elt s forward)

(elt s back))))

(> forward back))))))

This version would work with lists too, but its implementation is better suited
to vectors. The frequent calls to e l t would be expensive with lists, because

64 SPECIALIZED DATA STRUCTURES

lists only allow sequential access. In vectors, which allow random access, it
is as cheap to reach one element as any other.

Many sequence functions take one or more keyword arguments from the
standard set listed in this table:

PARAMETER

:key
: tes t
:from-end
: s ta r t
:end

PURPOSE

a function to apply to each element
the test function for comparison
if true, work backwards
position at which to start
position, if any, at which to stop

DEFAULT

i d e n t i t y
eql
n i l
0 j
n i l |

One function that takes the full set is pos i t ion , which returns the position
of an element in a sequence, or n i l if it is not found. We'll use pos i t ion to
illustrate the roles of the keyword arguments.

> (position #\a "fantasia")
1
> (position #\a "fantasia" :start 3 :end 5)
4

The second example asks for the position of the first a between the fourth and
sixth characters. The : s t a r t argument is the position of the first element to
be considered, and defaults to the first element of the sequence. The : end
argument is the position of the first element, if any, not to be considered.

If we give the : from-end argument,

> (position #\a "fantasia" :from-end t)
7

we get the position of the a closest to the end. But the position is calculated
in the usual way; it does not represent the distance from the end.

The : key argument is a function that is applied to each element of a
sequence before it is considered. If we ask something like this,

> (pos i t ion ' a ' ((c d) (a b)) :key # ' c a r)
1

then what we are asking for is the position of the first element whose car is
the symbol a.

The : t e s t argument is a function of two arguments, and defines what it
takes for a successful match. It always defaults to eql. If you're trying to
match a list, you might want to use equal instead:

4A SEQUENCES 65

> (pos i t ion ' (a b) ' ((a b) (c d)))
NIL
> (pos i t ion ' (a b) ' ((a b) (c d)) : t e s t # ' equa l)
0

The .-test argument can be any function of two arguments. For example,
by giving <, we can ask for the position of the first element such that the first
argument is less than it:

> (pos i t ion 3 ' (1 0 7 5) : t e s t # '<)
2

Using subseq and pos i t ion , we can write functions that take sequences
apart. For example, this function

(defun second-word (str)
(let ((pi (+ (position #\ str) 1)))

(subseq str pi (position #\ str :start pi))))

returns the second word in a string of words separated by spaces:

> (second-word "Form follows function.")

"follows"

To find an element satisfying a predicate of one argument, we use
pos i t ion-if . It takes a function and a sequence, and returns the posi
tion of the first element satisfying the function:

> (position-if #'oddp ' (2 3 4 5))

1

It takes all the keyword arguments except : t e s t .
There are functions similar to member and member-if for sequences.

They are, respectively, f ind (which takes all the keyword arguments) and
f ind - i f (which takes all except : t e s t) :

> (find #\a "cat")
#\a
> (f ind- i f # ' cha rac te rp "ham")
#\h

Unlike member and member-if, they return only the object they were looking
for.

Often a call to f i nd - i f will be clearer if it is translated into a f ind with
a : key argument. For example, the expression

66 SPECIALIZED DATA STRUCTURES

(f ind - i f #'(lambda (x)
(eql (car x) 'complete))

1s t)

would be better rendered as

(find 'complete 1st :key #'car)

The functions remove (page 22) and remove-if both work on sequences
generally. They bear the same relation to one another as f ind and f ind-if .
A related function is remove-duplicates, which preserves only the last of
each occurrence of any element of a sequence:

> (remove-duplicates "abracadabra")
"cdbra"

This function takes all the keyword arguments listed in the preceding table.
The function reduce is for boiling down a sequence into a single value.

It takes at least two arguments, a function and a sequence. The function must
be a function of two arguments. In the simplest case, it will be called initially
with the first two elements, and thereafter with successive elements as the
second argument, and the value it returned last time as the first. The value
returned by the last call is returned as the value of the reduce. Which means
that an expression like

(reduce # ' fn ' (a b c d))

is equivalent to

(fn (fn (fn ' a 'b) ' c) >d)

We can use reduce to extend functions that only take two arguments. For ex
ample, to get the intersection of three or more lists, we could write something
like

> (reduce # ' i n t e r s e c t i o n ' ((b r a d ' s) (b a d) (c a t)))
(A)

4.5 Example: Parsing Dates

As an example of operations on sequences, this section shows how\to
write a program to parse dates. We will write a program that can take a string \
like "16 Aug 1980 " and return a list of integers representing the day, month,
and year.

4.5 EXAMPLE: PARSING DATES 67

(defun tokens (s t r t e s t s t a r t)
(l e t

(i f

(defun
(and

((p i (pos i t i on - i f t e s t s t r
P i

: s t a r t

(l e t ((p2 (p o s i t i o n - i f #'(lambda

s t r
(cons (subseq s t r p i p2)

(i f p2

s t a r t)))

(c)
(not (funcal l t e s t c)))
: s t a r t

(tokens s t r t e s t p2)
n i l)))

n i l)))

cons t i tuen t (c)
(graphic-char-p c)
(not (char= c #\))))

Figure 4.2: Identifying tokens.

PD)) 1

Figure 4.2 contains some general-purpose parsing functions that we'll
need in this application. The first, tokens, is for extracting the tokens from
a string. Given a string and a test function, it returns a list of the substrings
whose characters satisfy the function. For example, if the test function is
alpha-char-p, which returns true of alphabetic characters, we get:

> (tokens Mabl2 3cde.f" tt'alpha-char-p 0)
("abn "cde" "f")

All characters that do not satisfy the function are treated as whitespace—they
separate tokens but are never part of them.

The function cons t i tuen t is defined for use as an argument to tokens.
In Common Lisp, graphic characters are all the characters we can see, plus
the space character. So if we use cons t i tuen t as the test function,

> (tokens "abl2 3cde.f
gh" # ; c o n s t i t u e n t 0)

(Mabl2" "3cde.f" "gh")

then tokens will have the conventional notion of whitespace.
Figure 4.3 contains functions specifically for parsing dates. The function

parse-da te takes a date in the specified form and returns a list of integers
representing its components:

68 SPECIALIZED DATA STRUCTURES

(defun parse-date (str)
(let ((toks (tokens str #'constituent 0)))
(list (parse-integer (first toks))

(parse-month (second toks))
(parse-integer (third toks)))))

(defconstant month-names
#("jan" "feb" "mar" "apr" "may" "jun"
"Jul" "aug" "sep" "oct" "nov" "dec"))

(defun parse-month (str)
(let ((p (position str month-names

:test #'string-equal)))
(if p

(+ p 1)
nil)))

Figure 4.3: Functions for parsing dates.

> (parse-da te "16 Aug 1980")
(16 8 1980)

It uses tokens to break up a date string, and then calls parse-month
and p a r s e - i n t e g e r to interpret the elements. To find the month, it calls
parse-month, which is not case-sensitive because it uses s t r ing -equa l to
match the name of the month. To find the day and year, it calls the built-in
pa r se - in t ege r , which takes a string and returns the corresponding integer.

If we had to write code to parse integers, we might say something like:

(defun r ead - in t ege r (s t r)
(i f (every # ' d i g i t - c h a r - p s t r)

(l e t ((accum 0))
(dotimes (pos (length s t r))

(se t f accum (+ (* accum 10)
(d i g i t - c h a r - p (char s t r p o s)))))

accum)
n i l))

This definition illustrates how to get from a character to a number in Common
Lisp—the function d i g i t - c h a r - p not only tests whether a character is a
digit, but returns the corresponding integer.

4.6 STRUCTURES 69

4.6 Structures

A structure can be considered as a deluxe kind of vector. Suppose you had to
write a program that kept track of a number of rectangular solids. You might
consider representing them as vectors of three elements: height, width, and
depth. Your program would be easier to read if, instead of using raw svref s,
you defined functions like

(defun block-height (b) (svref b 0))

and so on. You can think of a structure as a vector in which all these kinds of
functions get defined for you.

To define a structure, we use def s t r u c t . In the simplest case we just
give the name of the structure and the names of the fields:

(defstruct point

x

y)

This defines a point to be a structure with two fields, x and y. It also implicitly
defines the functions make-point, po in t -p , copy-point, point -x , and
point-y.

Section 2.3 mentioned that Lisp programs could write Lisp programs.
This is one of the most conspicuous examples we have seen so far. When you
call def s t r uc t , it automatically writes code defining several other functions.
With macros you will be able to do the same thing yourself. (You could even
write de f s t ruc t if you had to.)

Each call to make-point will return a new point . We can specify the
values of individual fields by giving the corresponding keyword arguments:

> (setf p (make-point :x 0 :y 0))
#S(POINT X 0 Y 0)

The access functions for point fields are defined not only to retrieve values,
but to work with setf.

> (point-x p)
0
> (setf (point-y p) 2)
2
> P
#S(POINT X 0 Y 2)

Defining a structure also defines a type of that name. Each point will
be of type point , then s t ruc tu re , then atom, then t . So as well as using
poin t -p to test whether something is a point,

70 SPECIALIZED DATA STRUCTURES

> (poin t -p p)
T
> (typep p ' po in t)
T

we can also use general-purpose functions like typep.
We can specify default values for structure fields by enclosing the field

name and a default expression in a list in the original definition.

(defstruct polemic
(type (progn

(format t "What kind of polemic was it? ")
(read)))

(effect nil))

If a call to make-polemic specifies no initial values for these fields, they will
be set to the values of the corresponding expressions:

> (make-polemic)
What kind of polemic was it? scathing
#S(POLEMIC TYPE SCATHING EFFECT NIL)

We can also control things like the way a structure is displayed, and the
prefix used in the names of the access functions it creates. Here is a more
elaborate definition for point that does both:

(de f s t ruc t (point (:cone-name p)
(. •pr int-funct ion p r i n t - p o i n t))

(x 0)
(y o))

(defun print-point (p stream depth)
(format stream "#<~A,~A>M (px p) (py p)))

The : cone-name argument specifies what should be concatenated to the
front of the field names to make access functions for them. By default it was
po in t - ; now it will be simply p. Not using the default makes your code a
little less readable, so you would only want to do this kind of thing if you're
going to be using the access functions constantly.

The : pr i n t - f unct ion is the name of the function that should be used to
print a point when it has to be displayed—e.g. by the toplevel. This function
must take three arguments: the structure to be printed, the place where it is
to be printed, and a third argument that can usually be ignored.2 We will

2 In ANSI Common Lisp, you can give instead a : p r in t -ob j ec t argument, which only takes
the first two arguments. There is also a macro pr in t -unreadable -objec t , which should be
used, when available, to display objects in # < . . . > syntax.

4.7 EXAMPLE: BINARY SEARCH TREES 71

CO

Figure

2ij

4.4:

4

3

A

CO
) CO
CO CO
) \7J

binary search tree.

deal with streams in Section 7.1. For now, suffice it to say that the stream
argument can simply be passed on to format.

The function p r i n t - p o i n t will display points in an abbreviated form:

> (make-point)
#<0,0>

4.7 Example: Binary Search Trees

Because sor t comes built-in, you will rarely, if ever, have to write sort
routines in Common Lisp. This section shows how to solve a related problem
for which no ready-made solution is provided: maintaining a sorted collection
of objects. The code in this section will store objects in binary search trees,
or BSTs. When balanced, BSTs allow us to find, add, or delete elements in
time proportional to log n, where n is the size of the set.

A BST is a binary tree in which, for some ordering function <, the left
child of each element is < the element, and the element is < its right child.
Figure 4.4 shows an example of a BST ordered according to <.

Figure 4.5 contains functions for inserting and finding objects in BSTs.
The fundamental data structure will be the node, which has three fields: one
for the object stored at that node, and one each for the left and right children
of the node. You could think of a node as a cons cell with one car and two
cdrs.

A BST is either n i l , or a node whose 1 and r fields are BSTs. As lists can
be built by successive calls to cons, BSTs will be built by successive calls to
b s t - i n s e r t . This function takes an object, a BST, and an ordering function,
and returns a BST that contains the object. Like cons, b s t - i n s e r t does not
modify the BST given as the second argument. Here's how we would use it to
build a BST:

72 SPECIALIZED DATA STRUCTURES

(defstruct (node (:print-function
(lambda (n s d)

(format s "#<~A>" (node-elt n)-))))

elt (1 nil) (r nil))

(defun bst-insert (obj bst <)

(if (null bst)

(make-node :elt obj)

(let ((elt (node-elt bst)))

(if (eql obj elt)

bst

(if (funcall < obj elt)

(make-node

:elt elt

:1 (bst-insert obj (node-1 bst) <)
:r (node-r bst))

(make-node
:elt elt

:r (bst-insert obj (node-r bst) <)

:1 (node-1 bst)))))))

(defun bst-find (obj bst <)

(if (null bst)

nil

(let ((elt (node-elt bst)))

(if (eql obj elt)

bst

(if (funcall < obj elt)

(bst-find obj (node-1 bst) <)

(bst-find obj (node-r bst) <))))))

(defun bst-min (bst)

(and bst

(or (bst-min (node-1 bst)) bst)))

(defun bst-max (bst)

(and bst

(or (bst-max (node-r bst)) bst)))

Figure 4.5: Binary search trees: Lookup and insertion.

4.7 EXAMPLE: BINARY SEARCH TREES 73

> (setf nums n i l)
NIL
> (do l i s t (x ' (5 8 4 2 1 9 6 7 3))

(setf nums (b s t - i n s e r t x nums # ' <)))
NIL

At this point the structure of nums corresponds to the tree shown in Figure 4.4.
We can use bs t - f ind, which takes the same arguments as b s t - i n s e r t ,

to find objects within a BST. The description of the node structure mentioned
that it was like a cons cell with two cdrs. The analogy becomes clearer when
we compare the definition of b s t - f ind to the definition of our-member on
page 16.

Like member, b s t - f ind returns not just the sought-for element, but the
subtree of which it is the root:

> (bst-find 12 nums #'<)

NIL

> (bst-find 4 nums #'<)

#<4>

This allows us to distinguish between failing to find something, and succeed
ing in finding n i l .

Finding the least and greatest elements of a BST is easy. To find the least,
we keep following left children, as in bst-min. To find the greatest, we keep
following right children, as in bst-max:

> (bst-min nums)

> (bst-max nums)
#<9>

Removing an element from a BST is just as fast, but requires more code.
Figure 4.6 shows how to do it. The function bst-remove takes an object,
a BST, and an ordering function, and returns a BST like the original one, but
without the object. Like remove, it does not modify the BST given as the
second argument:

> (setf nums (bst-remove 2 nums #'<))
#<5>

> (bst-find 2 nums #'<)

NIL

At this point nums might have the structure shown in Figure 4.7. (The other
possibility is that 1 took the place of 2.)

74 SPECIALIZED DATA STRUCTURES

(defun bst-remove (obj bst <)

(if (null bst)

nil

(let ((elt (node-elt bst)))

(if (eql obj elt)

(percolate bst)

(if (funcall < obj elt)

(make-node

:elt elt

:1 (bst-remove obj (node-1 bst) <)

:r (node-r bst))

(make-node

:elt elt

:r (bst-remove obj (node-r bst) <)

:1 (node-1 bst)))))))

(defun percolate (bst)

(cond ((null (node-1 bst))

(if (null (node-r bst))

nil

(rperc bst)))

((null (node-r bst)) (lperc bst))

(t (if (zerop (random 2))

(lperc bst)

(rperc bst)))))

(defun rperc (bst)

(make-node :elt (node-elt (node-r bst))

:1 (node-1 bst)

:r (percolate (node-r bst))))

(defun lperc (bst)
(make-node :elt (node-elt (node-1 bst))

:1 (percolate (node-1 bst))
:r (node-r bst)))

Figure 4.6: Binary search trees: Deletion.

4.7 EXAMPLE: BINARY SEARCH TREES 75

CO CO CO

Figure 4.7: Binary search tree after removal of an element.

(defun bst-traverse (fn bst)

(when bst

(bst-traverse fn (node-1 bst))

(funcall fn (node-elt bst))

(bst-traverse fn (node-r bst))))

Figure 4.8: Binary search trees: Traversal.

Deletion is more work because an object removed from an interior node
leaves an empty space that has to be filled by one or the other of the children.
This is the purpose of the function percolate. It replaces the topmost
element of a BST with one of its children, then replaces the child with one of
its children, and so on.

In order to maintain the balance of the tree, percolate chooses randomly
if there are two children. The expression (random 2) will return either 0 or
1, so (zerop (random 2)) will return true half the time.

Once we have a collection of objects inserted into a BST, an inorder traver
sal will yield them in ascending order. This is the purpose of bst-traverse,
in Figure 4.8:

> (bst-traverse #'princ nums)
13456789
NIL

(The function princ just displays a single object.)
The code given in this section provides a skeleton implementation of

BSTs. You would probably want to flesh it out somewhat, depending on the
application. For example, the code given here has only a single e l t field in
each node; in many applications, it would make sense to have two fields, key

76 SPECIALIZED DATA STRUCTURES

and value. The version in this chapter also treats BSTS as sets, in the sense
that duplicate insertions are ignored. But the code could easily be modified
to handle duplicate elements.

BSTS are not the only way to maintain a sorted collection of objects.
Whether they are the best way depends on the application. Generally, BSTs
work best when insertions and deletions are evenly distributed. So one of
the things they are not good for is maintaining priority queues. In a priority
queue, the insertions may be evenly distributed, but the deletions will always
happen at one end. This would cause a BST to become unbalanced, and our
expected 0(log n) insertions and deletions would become 0(n) instead. If you
used a BST to represent a priority queue, you might as well use an ordinary
list, because the BST would end up behaving like one.0

4.8 Hash Tables

Chapter 3 showed that lists could be used to represent both sets and mappings.
When either grow to a substantial size (say 10 elements) it will be faster to
use hash tables. You create a hash table by calling make-hash-table, which
has no required arguments:

> (setf ht (make-hash-table))
#<Hash-Table BF0A96>

Like functions, hash tables are always displayed in #<.. .> form.
A hash table, like an assoc-list, is a way of associating pairs of objects.

To retrieve the value associated with a given key, we call gethash with a key
and a hash table. By default, gethash returns n i l when there is no value
associated with the key.

> (gethash ' co lo r h t)
MIL
NIL

Here we see for the first time one of the distinctive features of Common Lisp:
an expression can return multiple values. The function gethash returns two.
The first is the value associated with the key, and the second says whether
the hash table has any value stored under that key. Because the second value
is n i l , we know that the first n i l was returned by default, not because n i l
was explicitly associated with color.

Most implementations will display all the return values of a call made at
the toplevel, but code that expects only one return value will get just the first.
Section 5.5 will explain how code can receive multiple return values.

4.8 HASH TABLES 77

To associate a value with a key, we use se t f with gethash:

> (setf (gethash ' co lo r h t) ' r ed)
RED

Now if we call gethash again we'll get the value we just inserted:

> (gethash ' co lo r h t)
RED
T

The second return value proves that now we're getting a real stored object
and not just a default.

The objects stored in a hash table or used as keys can be of any type. For
example, if we wanted to keep some kind of information about functions, we
could use a hash table with functions as keys and strings as entries:

> (setf bugs (make-hash-table))
#<Hash-Table BF4C36>
> (push "Doesn't take keyword arguments."

(gethash #'our-member bugs))
("Doesn't take keyword arguments.")

Since gethash returns n i l by default, and push is an abbreviation for a
setf, we can simply push new strings into the entry for a function. (The
offending our-member is defined on page 16.)

You can use hash tables instead of lists to represent sets. When the sets
become large, lookups and deletions should be much faster with hash tables.
To add a member to a set represented as a hash table, se t f the gethash of
it to t :

> (se t f f r u i t (make-hash-table))
#<Hash-Table BFDE76>
> (setf (gethash ' a p r i c o t f r u i t) t)
T

Then to test for membership you just call gethash:

> (gethash ' ap r i co t f r u i t)
T
T

Since gethash returns n i l by default, a new-made hash table is also, conve
niently, an empty set.

To remove an object from a set, you would call remhash, which removes
an entry from a hash table:

78 SPECIALIZED DATA STRUCTURES

> (remhash ' a p r i c o t f r u i t)
T

The return value shows whether there was an entry to remove; in this case
there was.

There is an iteration function for hash tables: maphash, which takes a
function of two arguments and a hash table. The function will be called on
every key/value pair in the table, in no particular order:

> (setf (gethash 'shape ht) 'spherical
(gethash 'size ht) 'giant)

GIANT
> (maphash #'(lambda (k v)

(format t "~A = ~k~V% k v))
ht)

SHAPE = SPHERICAL
SIZE = GIANT
COLOR = RED
NIL

It always returns n i l , but you can save the values by passing a function that
will accumulate them in a list.

Hash tables can accommodate any number of elements, because they are
expanded when they run out of space. If you want to ensure that a hash
table starts with room for a particular number of elements, you can give the
optional : s i ze argument to make-hash-table. There are two reasons to
do this: because you know the hash table is going to be huge, and you want
to avoid expanding it; or because you know the hash table is going to be
small, and you don't want to waste memory. The : s i ze argument specifies
not the number of spaces in the hash table, but the number of elements, on
the average, it will be able to accommodate before being expanded. So

(make-hash-table : s i ze 5)

would return a hash table intended to hold up to five elements.
Like any structure involved in lookups, hash tables must have some notion

of equality for keys. By default they use eql, but you can specify that a hash
table should use eq, equal, or equalp instead by providing the optional
: t e s t argument:

> (setf writers (make-hash-table : tes t #'equal))
#<Hash-Table C005E6>
> (setf (gethash ' (ralph waldo emerson) writers) t)
T

SUMMARY 79

This is one of the trade-offs we have to make for the efficiency of hash tables.
With lists, we could specify the equality predicate in the call to member. With
hash tables we have to decide ahead of time, and specify it when the hash
table is created.

Most of the trade-offs in Lisp programming (or life, for that matter) have
this character. Initially you try to keep things fluid, even at the cost of
efficiency. Later, as the program hardens, you can sacrifice some flexibility
for speed.

Summary

1. Common Lisp supports arrays of at least 7 dimensions. One-dimensional
arrays are called vectors.

2. Strings are vectors of characters. Characters are objects in their own
right.

3. Sequences include lists and vectors. Many sequence functions take
keyword arguments from a standard set.

4. Parsing is easy in Lisp because it has so many functions that work on
strings.

5. Calling def struct defines a structure with named fields. It is a good
example of a program that writes programs.

6. Binary search trees are useful for maintaining a sorted collection of
objects.

7. Hash tables provide a more efficient way to represent sets and mappings.

Exercises

1. Define a function to take a square array (an array whose dimensions
are (n n)) and rotate it 90° clockwise:

> (quarter-turn #2A((a b) (c d)))
#2A((C A) (D B))

You'll need array-dimensions (page 361).

80 SPECIALIZED DATA STRUCTURES

2. Read the description of reduce on page 368, then use it to define:

(a) c o p y - l i s t

(b) reverse (for lists)

3. Define a structure to represent a tree where each node contains some
data and has up to three children. Define

(a) a function to copy such a tree (so that no node in the copy is eql
to a node in the original)

(b) a function that takes an object and such a tree, and returns true if
the object is eql to the data field of one of the nodes

4. Define a function that takes a BST and returns a list of its elements
ordered from greatest to least.

5. Define bs t - ad j oin. This function should take the same arguments as
b s t - i n s e r t , but should only insert the object if there is nothing eql
to it in the tree.

6. The contents of any hash table can be described by an assoc-list whose
elements are (k . v), for each key-value pair in the hash table. Define
a function that

(a) takes an assoc-list and returns a corresponding hash table

(b) takes a hash table and returns a corresponding assoc-list

5

Control

Section 2.2 introduced the Common Lisp evaluation rule, which by now
should be familiar from long experience. What the operators in this chapter
have in common is that they all violate the evaluation rule. They let you
direct the course that evaluation will take through the text of a program. If
ordinary function calls are the leaves of a Lisp program, these operators are
used to build the branches.

5.1 Blocks

Common Lisp has three basic operators for creating blocks Of code: progn,
block, and tagbody. We have seen progn already. The expressions within
its body are evaluated in order, and the value of the last is returned:0

> (progn
(format t "a")
(format t "b")
(+ 11 12))

ab
23

Since only the value of the last expression is returned, the use of progn (or
any block) implies side-effects.

A block is like a progn with a name and an emergency exit. The first
argument should be a symbol. This becomes the name of the block. At any
point within the body, you can halt evaluation and return a value immediately
by using re tu rn - f rom with the block's name:

81

82 CONTROL

> (block head
(format t "Here we go.")
(return-from head 'idea)
(format t "We'll never see t h i s . "))

Here we go.
IDEA

Calling return-from allows your code to make a sudden but graceful exit
from anywhere in a body of code. The second argument to return-from is
returned as the value of the block named by the first. Expressions after the
return-from are not evaluated.

There is also a return macro, which returns its argument as the value of
an enclosing block named n i l :

> (block n i l
(return 27))

27

Many Common Lisp operators that take a body of expressions implicitly
enclose the body in a block named n i l . All iteration constructs do, for
example:

> (dolist (x ' (a b c d e))

(format t "~A " x)
(if (eql x >c)

(return 'done)))

A B C

DONE

The body of a function defined with def un is implicitly enclosed in a block
with the same name as the function, so you can say:

(defun foo ()
(return-from foo 27))

Outside of an explicit or implicit block, neither return-from nor return
will work.

Using return-from we can write a better version of read-integer:

(defun read-integer (str)

(let ((accum 0))

(dotimes (pos (length str))

(let ((i (digit-char-p (char str pos))))

(if i

(setf accum (+ (* accum 10) i))

(return-from read-integer nil))))

accum))

5.2 CONTEXT 83

The version on page 68 had to check all the characters before building the
integer. Now the two steps can be combined, because we can abandon the
calculation if we encounter a character that's not a digit.

The third basic block construct is tagbody, within which you can use
gotos. Atoms appearing in the body are interpreted as labels; giving such a
label to go sends control to the expression following it. Here is an exceedingly
ugly piece of code for printing out the numbers from 1 to 10:

> (tagbody

(setf x 0)

top

(setf x (+ x 1))

(format t "~A " x)

(if (< x 10) (go top)))

1 2 3 4 5 6 7 8 9 10

NIL

This operator is mainly something that other operators are built upon, not
something you would use yourself. Most iteration operators have an implicit
tagbody, so it's possible (though rarely desirable) to use labels and go within
their bodies.

How do you decide which block construct to use? Nearly all the time
you'll use progn. If you want to allow for sudden exits, use block instead.
Most programmers will never use tagbody explicitly.

5.2 Context

Another operator we've used to group expressions is l e t . It takes a body of
code, but also allows us to establish new variables for use within the body:

> (l e t ((x 7)
(y 2))

(format t "Number")
(+ x y))

Number
9

An operator like l e t creates a new lexical context. Within this context there
are two new variables, and variables from outer contexts may have thereby
become invisible.

Conceptually, a l e t expression is like a function call. Section 2.14
showed that, as well as referring to a function by name, we could refer to it
literally by using a lambda expression. Since a lambda expression is like the

84 CONTROL

name of a function, we can use one, as we would a function name, as the first
element in a function call:

> ((lambda (x) (+ x 1)) 3)
4

The preceding l e t expression is exactly equivalent to:

((lambda (x y)
(format t "Number")
(+ x y))

7
2)

Any questions you have about l e t should be dealt with by passing the buck
to lambda, because entering a l e t is conceptually equivalent to doing a
function call.0

One of the things this model makes clear is that the value of one l e t -
created variable can't depend on other variables created by the same l e t . For
example, if we tried to say

(l e t ((x 2)
(y (+ x 1)))

(+ x y))

then the x in (+ x 1) would not be the x established in the previous line,
because the whole expression is equivalent to

((lambda (x y) (+ x y)) 2
(+ x 1))

Here it's obvious that the (+ x 1) passed as an argument to the function
cannot refer to the parameter x within the function.

So what if you do want the value of one new variable to depend on the
value of another variable established by the same expression? In that case
you would use a variant called l e t* :

> (l e t * ((x 1)
(y (+ x 1)))

(+ x y))
3

A l e t * is functionally equivalent to a series of nested l e t s . This particular
example is equivalent to:

5.3 CONDITIONALS 85

(l e t ((x 1))
(l e t ((y (+ x 1)))

(+ x y)))

In both l e t and le t* , initial values default to n i l . Such variables need not
be enclosed within lists:

> (l e t (x y)
(l i s t x y))

(NIL NIL)

The des t ruc tur ing-b ind macro is a generalization of l e t . Instead of
single variables, it takes a pattern—one or more variables arranged in the
form of a tree—and binds them to the corresponding parts of some actual
tree. For example:

> (des t ruc tur ing-bind (w (x y) . z) ' (a (b c) d e)
(l i s t w x y z))

(A B C (D E))

It causes an error if the tree given as the second argument doesn't match the
pattern given as the first.

5.3 Conditionals

The simplest conditional is if; all the others are built upon it. The simplest
after if is when, which takes an expression and a body of code. The body
will be evaluated if the test expression returns true. So

(when (oddp t h a t)
(format t "Hmm, t h a t ' s odd.")
(+ t h a t 1))

is equivalent to

(if (oddp t h a t)
(progn

(format t "Hmm, t h a t ' s odd.")
(+ t ha t 1)))

The opposite of when is unless ; it takes the same arguments, but the body
will be evaluated only if the test expression returns false.

The mother of all conditionals (in both senses) is cond, which brings
two new advantages: it allows multiple conditions, and the code associated
with each has an implicit progn. It's intended for use in situations where we
would otherwise have to make the third argument of an i f another if. For
example, this pseudo-member

86 CONTROL

(defun our-member (obj 1st)

(if (atom 1st)

nil

(if (eql (car 1st) obj)

1st

(our-member obj (cdr 1st)))))

could also be defined as

(defun our-member (obj 1st)

(cond ((atom 1st) nil)

((eql (car 1st) obj) 1st)

(t (our-member obj (cdr 1st)))))

In fact, a Common Lisp implementation will probably implement cond by
translating the latter into the former.

In general, cond takes zero or more arguments. Each one must be a list
consisting of a condition followed by zero or more expressions. When the
cond expression is evaluated, the conditions are evaluated in order until one
of them returns true. When it does, the expressions associated with it are
evaluated in order, and the value of the last is returned as the value of the
cond. If there are no expressions after the successful condition

> (cond (99))
99

the value of the condition itself is returned.
Since a cond clause with a condition of t will always succeed, it is

conventional to make the final, default clause have t as the condition. If
no clause succeeds, the cond returns n i l , but it is usually bad style to take
advantage of this return value. (For an example of the kind of problem that
can occur, see page 292.)

When you want to compare a value against a series of constants, there is
case. We might use case to define a function to return the number of days
in a month:

(defun month-length (mon)
(case mon

((jan mar may ju l aug oct dec) 31)
((apr jun sept nov) 30)
(feb (i f (leap-year) 29 28))
(otherwise "unknown month")))

A case expression begins with an argument whose value will be compared
against the keys in each clause. Then come zero or more clauses, each one

5.4 ITERATION 87

beginning with either a key, or a list of keys, followed by zero or more
expressions. The keys are treated as constants; they will not be evaluated.
The value of the first argument is compared (using eql) to the key/s at the
head of each clause. If there is a match, the expressions in the rest of that
clause are evaluated, and the value of the last is returned as the value of the
case.

The default clause may have the key t or otherwise. If no clause
succeeds, or the successful clause contains only keys,

> (case 99 (99))
NIL

then the case returns n i l .
The typecase macro is similar to case, except that the keys in each clause

should be type specifiers, and the value of the first argument is compared to
the keys using typep instead of eql. (An example of typecase appears on
page 107.)

5.4 Iteration

The basic iteration operator is do, which was introduced in Section 2.13.
Since do contains both an implicit block and an implicit tagbody, we now
know that it's possible to use return, return-f rom, and go within the body
of a do.

Section 2.13 mentioned that the first argument to do had to be a list of
specifications for variables, each possibly of the form

{variable initial update)

The initial and update forms are optional. If the update form is omitted, the
variable won't be updated on successive iterations. If the initial form is also
omitted, the variable will be initially n i l .

In the example on page 23,

(defun show-squares (start end)

(do ((i start (+ i 1)))

((> i end) 'done)

(format t "~A ~k~V." i (* i i))))

the update form refers to the variable created by the do. This is commonplace.
It would be rare to find a do whose update forms didn't refer to at least one
of its own variables.

When more than one variable is to be updated, the question arises, if an
update form refers to a variable that has its own update form, does it get the

88 CONTROL

updated value or the value from the previous iteration? With do, it gets the
latter:

> (l e t ((x ' a))
(do ((x 1 (+ x 1))

(y x x))
((> x 5))

(format t M(~A ~A) " x . y)))
(1 A) (2 1) (3 2) (4 3) (5 4)
NIL

On each iteration, x gets its previous value plus 1; y also gets the previous
value of x.

But there is also a do*, which has the same relation to do as l e t * does
to l e t . Any initial or update form can refer to a variable from a previous
clause, and it will get the current value:

> (do* ((x 1 (+ x 1))
(y x x))

((> x 5))
(format t "(~A ~A) " x y))

(1 1) (2 2) (3 3) (4 4) (5 5)
NIL

Besides do and do* there are several special-purpose iteration operators.
To iterate over the elements of a list, we can use d o l i s t :

> (dolist (x '(abed) 'done)
(format t "~A " x))

A B C D
DONE

The third expression within the initial list will be evaluated and returned as
the value of the d o l i s t when iteration terminates. It defaults to n i l .

Similar in spirit is dotimes, which for some n iterates over the integers
fromOtow-1:

> (dotimes (x 5 x)
(format t "~A " x))

0 1 2 3 4
5

As with d o l i s t , the third expression in the initial list is optional and defaults
to n i l . Notice that it can refer to the iteration variable.

The function mapc is like mapcar but does not cons up a new list as a
return value, so the only reason to use it is for side-effects. It is more flexible
than d o l i s t , because it can traverse multiple lists in parallel:

5.5 MULTIPLE VALUES 89

THE POINT OF do

In "The Evolution of Lisp," Steele and Gabriel express the point of do so
well that the passage is worth quoting in its entirety:

Arguments over syntax aside, there is something to be said for recognizing
that a loop that steps only one variable is pretty useless, in any program
ming language. It is almost always the case that one variable is used to
generate successive values while another is used to accumulate a result. If
the loop syntax steps only the generating variable, then the accumulating
variable must be stepped "manually" by using assignment statements.. .or
some other side effect. The multiple-variable do loop reflects an essential
symmetry between generation and accumulation, allowing iteration to be
expressed without explicit side effects:

(defun f a c t o r i a l (n)
(do ((j n (- j 1))

(f 1 (* j f)))
((= j 0) f)))

It is indeed not unusual for a do loop of this form to have an empty body,
performing all its real work in the step forms.0

> (mapc #'(lambda (x y)
(format t "~A ~A " x y))

'(hip flip slip)
'(hop flop slop))

HIP HOP FLIP FLOP SLIP SLOP
(HIP FLIP SLIP)

It always returns its second argument.

5.5 Multiple Values

One used to say, in order to emphasize the importance of functional program
ming, that every Lisp expression returned a value. Now things are not so
simple; in Common Lisp, an expression can return zero or more values. The
maximum number of return values is implementation-dependent, but it will
be at least 19.

Multiple values allow a function that calculates several things to return
them without having to build a structure to contain them all. For example, the
built-in get-decoded-time returns the current time in nine values: second,

90 CONTROL

minute, hour, date, month, day, and two others.
Multiple values also make it possible to have lookup functions that can

distinguish between finding n i l and failing to find something. This is why
gethash returns two values. Because it uses the second value to indicate
success or failure, we can store n i l in a hash table just like any other value.

The values function returns multiple values. It returns exactly the values
you give it as arguments:

> (values 'a n i l (+ 2 4))
A
NIL
6

If a values expression is the last thing to be evaluated in the body of a
function, its return values become those of the function. Multiple values are
passed on intact through any number of returns:

> ((lambda () ((lambda () (values 1 2)))))
1
2

However, if something is expecting only one value, all but the first will be
discarded:

> (l e t ((x (values 1 2)))
x)

1

By using values with no arguments, it's possible to return no values. In
that case, something expecting one will get n i l :

> (values)
> (l e t ((x (values)))

x)
NIL

To receive multiple values, we use multiple-value-bind:

> (multiple-value-bind (x y z) (values 1 2 3)
(l i s t x y z))

(1 2 3)
> (multiple-value-bind (x y z) (values 1 2)

(list x y z))
(1 2 NIL)

5.6 ABORTS 91

If there are more variables than values, the leftover ones will be n i l . If there
are more values than variables, the extra values will be discarded. So to print
just the time we might write:0

> (multiple-value-bind (s m h) (get-decoded-time)

(format nil "~A:~A:~A" h m s))

"4:32:13"

You can pass on multiple values as the arguments to a second function
using mu l t i p l e -va lue -ca l l :

> (mul t ip l e -va lue -ca l l # ' + (values 1 2 3))
6

There is also a function m u l t i p l e - v a l u e - l i s t :

> (m u l t i p l e - v a l u e - l i s t (values ' a 'b ' c))
(A B C)

which is like using m u l t i p l e - v a l u e - c a l l with # ' l i s t as the first argu
ment.

5.6 Aborts

You can use r e tu rn to exit from a block at any point. Sometimes we want
to do something even more drastic, and transfer control back through several
function calls. To do this we use catch and throw. A cat ch expression takes
a tag, which can be any kind of object, followed by a body of expressions.

(defun super ()
(catch }abort

(sub)
(format t "We'll never see t h i s . ")))

(defun sub ()
(throw ' abor t 99))

The expressions are evaluated in order, as if in a progn. At any point within
this code or code called by it, a throw with the corresponding tag will cause
the catch expression to return immediately:

> (super)
99

92 CONTROL

A throw with a given tag will pass control through (and thereby kill) any
catches with other tags in order to reach the one with the matching tag. If
there is no pending catch with the right tag, the throw causes an error.

Calling e r r o r also interrupts execution, but instead of transferring control
to another point higher up in the calling tree, it transfers control to the Lisp
error handler. Usually the result will be to invoke a break loop. Here is what
might happen in a hypothetical Common Lisp implementation:

> (progn
(e r ro r "Oops!")
(format t "After the error."))

Error: Oops!

Options: :abort, :backtrace
»

For more on errors and conditions, see Section 14.6 and Appendix A.
Sometimes you want code to be proof against interruptions like throws

and errors. By using an unwind-protect, you can ensure that such interrup
tions won'tleave your program in an inconsistent state. An unwind-protect
takes any number of arguments and returns the value of the first. However,
the remaining expressions will be evaluated even if the evaluation of the first
is interrupted.

> (se t f x 1)
1
> (catch ' abor t

(unwind-protect

(throw 'abort 99)

(setf x 2)))

99

> x
2

Here, even though the throw sends control back to the waiting catch,
unwind-protect ensures that the second expression gets evaluated on the
way out. Whenever certain actions have to be followed by some kind of
cleanup or reset, unwind-protect may be useful. One example is men
tioned on page 121.

5.7 Example: Date Arithmetic

In some applications it's useful to be able to add and subtract dates—to be
able to calculate, for example, that the date 60 days after December 17,1997

5.7 EXAMPLE: DATE ARITHMETIC 93

is February 15,1998. In this section we will write a utility for date arithmetic.
We will convert dates to integers, with zero fixed at January 1, 2000. We will
be able to manipulate such integers using the built-in + and - functions, and
when we're finished, convert the result back to a date.

To convert a date to an integer, we will add together the number of days
represented by each of its components. For example, the integer value of
November 13, 2004 is the sum of the number of days up to 2004, plus the
number of days up to November, plus 13.

One thing we'll need here is a table listing the number of days up to the
start of each month in a non-leap year. We can use Lisp to derive the contents
of this table. We start by making a list of the lengths of each of the months:

> (setf mon '(31 28 31 30 31 30 31 31 30 31 30 31))
(31 28 31 30 31 30 31 31 30 31 30 31)

We can test that the lengths add up properly by applying + to the list:

> (apply #'+ mon)
365

Now if we reverse the list and use mapl is t to apply + to successive cdrs, we
can get the number of days up to the beginning of each month:

> (setf nom (reverse mon))
(31 30 31 30 31 31 30 31 30 31 28 31)
> (setf sums (maplist #'(lambda (x)

(apply #'+ x))
nom))

(365 334 304 273 243 212 181 151 120 90 59 31)
> (reverse sums)
(31 59 90 120 151 181 212 243 273 304 334 365)

These numbers indicate that there are 31 days up to the start of February, 59
up to the start of March, and so on.

The list we just created is transformed into a vector in Figure 5.1, which
contains the code for converting dates to integers.

There are four stages in the life of a typical Lisp program: it is written,
then read, then compiled, then run. One of the distinctive things about Lisp
is that it's there at every stage. You can invoke Lisp when your program is
running, of course, but you can also invoke it when your program is compiled
(Section 10.2) and when it is read (Section 14.3). The way we derived month
shows how you can use Lisp even as you're writing a program.

Efficiency usually only matters in the last of the four stages, run-time.
In the first three stages you can feel free to take advantage of the power and
flexibility of lists without worrying about the cost.

94 CONTROL

(defconstant month

#(0 31 59 90 120 151 181 212 243 273 304 334 365))

(defconstant yzero 2000)

(defun leap? (y)

(and (zerop (mod y 4))

(or (zerop (mod y 400))

(not (zerop (mod y 100))))))
(defun date->num (d m y)

(+ (- d 1) (month-num m y) (year-num y)))

(defun month-num (m y)
(+ (svref month (-ml))

(if (and (> m 2) (leap? y)) 1 0)))

(defun year-num (y)
(let ((d 0))

(if (>= y yzero)
(dotimes (i (- y yzero) d)
(incf d (year-days (+ yzero i))))

(dotimes (i (- yzero y) (- d))
(incf d (year-days (+ y i)))))))

(defun year-days (y) (if (leap? y) 366 365))

Figure 5.1: Date arithmetic: Converting dates to integers.

If you used the code in Figure 5.1 to drive a time machine, people would
probably disagree with you about the date when you arrived. European dates
have shifted, even in comparatively recent times, as people got a more precise
idea of the length of a year. In English-speaking countries, the last such
discontinuity was in 1752, when the date went straight from September 2 to
September 14.°

The number of days in a year depends on whether it is a leap year. A year
is a leap year if it is divisible by 4, unless it is divisible by 100, in which case
it isn't—unless it is divisible by 400, in which case it is. So 1904 was a leap
year, 1900 wasn't, and 1600 was.

To determine whether one number is divisible by another we use the
function mod, which returns the remainder after division:

SUMMARY 95

> (mod 23 5)
3
> (mod 25 5)
0

The first argument is divisible by the second if the remainder is zero. The
function leap? uses this technique to determine whether its argument is a
leap year:

> (mapcar #'leap? '(1904 1900 1600))
(T NIL T)

The function we'll use to convert dates to integers is date->num. It
returns the sum of the values for each component of a date. To find the
number of days up to the start of the month, it calls month-num, which looks
in month, then adds 1 if the month is after February in a leap year.

To find the number of days up to the start of the year, date->num calls
year-num, which returns the integer representing January 1 of that year. This
function works by counting up or down from the year y given as an argument
toward year zero (2000).

Figure 5.2 shows the second half of the code. The function num->date
converts integers back to dates. It calls num-year, which returns the year in
the date, and the number of days left over. It passes the latter to num-month,
which extracts the month and day.

Like year-num, num-year counts up or down from year zero, one year
at a time. It accumulates days until it has a number whose absolute value is
greater than or equal to that of n. If it was counting down, then it can return
the values from the current iteration. Otherwise it will overshoot the year,
and must return the values from the previous iteration. This is the point of
prev, which on each iteration will be given the value that days had on the
previous iteration.

The function num-month and its subroutine nmon behave like month-num
in reverse. They go from value to position in the constant vector month, while
month-num goes from position to value.

The first two functions in Figure 5.2 could have been combined in one.
Instead of returning values to another function, num-year could invoke
num-month directly. The code is easier to test interactively when it's broken
up like this, but now that it works, the next step might be to combine them.

With date->num and num->date, date arithmetic is easy.0 We use them
as in date+, which can add or subtract days from a date. If we ask date+ for
the date 60 days from December 17,1997,

> (mult ip le-value- l i s t (date+ 17 12 1997 60))
(15 2 1998)

we get February 15,1998.

96 CONTROL

(defun num->date (n)
(multiple-value-bind (y left) (num-year n)
(multiple-value-bind (m d) (num-month left y)
(values d m y))))

(defun num'-year (n)
(if (< n 0)

(do* ((y (- yzero 1) (- y 1))
(d (- (year-days y)) (- d (year-days y))))
((<= d n) (values y (- n d))))

(do* ((y yzero (+ y 1))
(prev 0 d)
(d (year-days y) (+ d (year-days y))))
((> d n) (values y (- n prev))))))

(defun num-month (n y)
(if (leap? y)

(Gond ((= n 59) (values 2 29))
((> n 59) (nmon (- n 1)))
(t (nmon n)))

(nmon n)))

(defun nmon (n)
(let ((m (position n month :test #*<)))
(values m (+ 1 (- n (svref month (- m 1)))))))

(defun date-*- (d m y n)
(num->date (+ (date->num d m y) n)))

Figure 5.2: Date arithmetic: Converting integers to dates.

Summary

1. Common Lisp has three basic block constructs: progn; block, which
allows returns; and tagbody, which allows gotos. Many built-in oper
ators have implicit blocks.

2. Entering a new lexical context is conceptually equivalent to a function
call.

3. Common Lisp provides conditionals suited to various situations. All
can be denned in terms of if.

EXERCISES 97

4. There is a similar variety of operators for iteration.

5. Expressions can return multiple values.

6. Computations can be interrupted, and protected against the conse
quences of interruption.

Exercises

1. Translate the following expressions into equivalent expressions that
don't use l e t or le t* , and don't cause the same expression to. he
evaluated twice.

(a) (l e t ((x (car y)))
(cons x x))

(b) (l e t * ((w (car x))
(y (+ v z)))

(cons w y))

2. Rewrite mystery (page 29) to use cond.

3. Define a function that returns the square of its argument, and which
does not compute the square if the argument is a positive integer less
than or equal to 5.

4. Rewrite num-month (Figure 5.1) to use case instead of svref.

5. Define iterative and recursive versions of a function that takes an object
x and vector v, and returns a list of all the objects that immediately
precede x in v:

> (precedes #\a "abracadabra")
(#\c #\d # \ r)

6. Define iterative and recursive versions of a function that takes an object
and a list, and returns a new list in which the object appears between
each pair of elements in the original list:

> (intersperse ' - '(abed))
(A - B - C - D)

98 CONTROL

7. Define a function that takes a list of numbers and returns true iff the
difference between each successive pair of them is 1, using

(a) recursion

(b) do

(c) mapc and r e t u r n

8. Define a single recursive function that returns, as two values, the max
imum and minimum elements of a vector.

9. The program in Figure 3.12 continues to search as the first complete
path works its way through the queue. In broad searches this would be
a problem.

(a) Using catch and throw, modify the program to return the first
complete path as soon as it is discovered.

(b) Rewrite the program to do the same thing without using catch
and throw.

6

Functions

Understanding functions is one of the keys to understanding Lisp. Concep
tually, functions are at the core of Lisp. Practically, they are one of the most
useful tools at your disposal.

6.1 Global Functions

The predicate f boundp tells whether there is a function with a given symbol
as its name. If a symbol is the name of a function, symbol-function will
return it:

> (fboundp '+)
T
> (symbol-function '+)
#<Compiled-Function + 17BA4E>

By setting the symbol-function of some name to a function,

(setf (symbol-function 'add2)

#'(lambda (x) (+ x 2)))

we thereby define a new global function, which we can use just as if we had
defined it with def un:

> (add2 1)
3

99

100 FUNCTIONS

In fact, def un does little more than translate something like

(defun add2 (x) (+ x 2))

into the se t f expression above. Using defun makes programs look nicer,
and may help the compiler, but strictly speaking you don't need it to write
programs.

By making the first argument to defun a list of the form (setf /) , you
define what happens when the first argument to se t f is a call to f.° The
following pair of functions defines primo as a synonym for car:

(defun primo (1s t) (car 1 s t))

(defun (setf primo) (val 1st)
(setf (car 1st) val))

In the definition of a function whose name is of the form (setf /) , the first
parameter represents the new value, and the remaining parameters represent
arguments to/.°

Now any se t f of primo will be a call to the latter function above:

> (l e t ((x (l i s t ' a 5b >c)))
(se t f (primo x) 480)
x)

(480 B C)

It's not necessary to define primo in order to define (se t f primo), but such
definitions usually come in pairs.

Since strings are Lisp expressions, there is no reason they can't appear
within bodies of code. A string by itself does not have side-effects, and so
doesn't make any difference unless it's the last expression. If you make a
string the first expression in the body of a function defined with defun,

(defun foo (x)
"Implements an enhanced paradigm of diversity."
x)

then that string will become the function's documentation string. The
documentation for a globally defined function can be retrieved by calling
documentation:

> (documentation 'foo ' funct ion)
"Implements an enhanced paradigm of d i v e r s i t y . "

6.2 LOCAL FUNCTIONS 101

6.2 Local Functions

Functions defined via def un or se t f of symbol-function are global func
tions. Like global variables you have access to them anywhere. It is also
possible to define local functions, which, like local variables, are only acces
sible within a certain context.

Local functions can be defined with l abe l s , which is a kind of l e t for
functions. Its first argument, instead of being a list of specifications for new
local variables, is a list of definitions of new local functions. Each element
of the list is of the form

(name parameters . body)

Within the remainder of the l a b e l s expression, calling name is equivalent
to calling (lambda parameters . body).

>^(labels ((addlO (x) (+ x 10))
(consa (x) (cons 'a x)))

(consa (addlO 3)))
(A . 13)

The analogy to l e t breaks down in one respect. Local functions defined
by a l abe l s expression can refer to any other functions defined there, in
cluding themselves. So it's possible to define recursive local functions this
way:

> (l abe l s ((l en (1s t)
(i f (nu l l 1s t)

0
(+ (len (cdr 1 s t)) 1))))

(len ' (a b c)))
3

Section 5.2 showed how a l e t expression could be understood as a
function call. A do expression can be similarly explained as a call to a
recursive function. A do of the form

(do ((x a (b x))
(y c (d y)))

((t e s t x y) (z x y))
(f x y))

is equivalent to

102 FUNCTIONS

(l abe l s ((r ec (x y)
(cond ((t e s t x y)

(z x y))
(t

(f x y)
(rec (b x) (d y))))))

(rec a c))

This model can be used to resolve any questions you might still have about
the behavior of do.

6.3 Parameter Lists

Section 2.1 showed that with prefix notation + could take any number of
arguments. Since then we have seen several functions that could take varying
numbers of arguments. To write such functions ourselves, we need to use
something called a rest parameter.

If we insert the token ferest before the last variable in the parameter list
of a function, then when the function is called, this variable will be set to a
list of all the remaining arguments. Now we can see how f unca l l would be
written in terms of apply. It might be defined as:

(defun our - funca l l (fn ferest args)
(apply fn a rgs))

We have also seen operators in which arguments could be omitted, and
would default to certain values. Such parameters are called optional pa
rameters. (By contrast, ordinary parameters are sometimes called required
parameters.) If the symbol feoptional occurs in the parameter list of a
function,

(defun philosoph (th ing feoptional property)
(l i s t t h ing ' i s p roper ty))

then all the arguments after it are optional, and default to n i l :

> (philosoph 'death)
(DEATH IS NIL)

We give an explicit default by enclosing it in a list with the parameter. This
version of philosoph

(defun philosoph (th ing feoptional (property ' fun))
(l i s t t h ing ' i s p roper ty))

6.4 PARAMETER LISTS 103

has a more cheerful default:

> (philosoph 'death)
(DEATH IS FUN)

The default for an optional parameter need not be a constant. It can be any
Lisp expression. If this expression isn't a constant, it will be evaluated anew
each time a default is needed.

A keyword parameter is a more flexible kind of optional parameter. If
you put the symbol &key in a parameter list, then all the parameters after it
are optional. Moreover, when the function is called, these parameters will be
identified not by their position, but by symbolic tags that precede them:

> (defun keylist (a &key x y z)
(list a x y z))

KEYLIST
> (keylist 1 :y 2)
(1 NIL 2 NIL)
> (keylist 1 :y 3 :x 2)
(12 3 NIL)

Like ordinary optional parameters, keyword parameters default to n i l , but
explicit defaults may be specified in the parameter list.

Keywords and their associated arguments can be collected in rest param
eters and passed on to other functions that are expecting them. For example,
we could define adjoin as:

(defun our-adjoin (obj 1st &rest args)
(if (apply #>member obj 1st args)

1st
(cons obj 1 s t)))

Since adjoin takes the same keyword arguments as member, we just collect
them in a rest argument and pass them on to member.

Section 5.2 introduced the des t ruc tu r ing-b ind macro. In the general
case, each subtree in the pattern given as the first argument may be as complex
as the parameter list of a function:

> (des t ruc tur ing-bind ((&key w x) &rest y) ' ((:w 3) a)
(l i s t w x y))

(3 NIL (A))

104 FUNCTIONS

6.4 Example: Utilities

Section 2.6 mentioned that Lisp consists mostly of Lisp functions, just like the
ones you can define yourself. This is a useful feature to have in a programming
language: you don't have to modify your ideas to suit the language, because
you can modify the language to suit your ideas. If you find yourself wishing
that Common Lisp included a certain function, you can write it yourself, and
it will be just as much a part of the language as + or eql.

Experienced Lisp programmers work bottom-up as well as top-down.
While they're writing their program down toward the language, they also
build the language up toward their program. This way, language and program
meet sooner, and more neatly.

Operators written to augment Lisp are called utilities. As you write more
Lisp programs, you will find that you develop a collection of them, and that
many of the utilities you write during one project will turn out to be useful in
the next one.

Professional programmers often find that the program they're working
on now has a great deal in common with some program they wrote in the
past. It is this feeling that makes the idea of software reuse so attractive.
Somehow reuse has become associated with object-oriented programming.
But software does not have to be object-oriented to be reusable—this is
obvious when we look at programming languages (that is, compilers), which
are the most reusable software of all.

The way to get reusable software is to write programs bottom-up, and
programs don't have to be object-oriented to be written bottom-up. In fact,
the functional style seems even better adapted for writing reusable software.
Consider sor t . You are unlikely ever to have to write your own sort routines
in Common Lisp; so r t is so fast and so general that it would not be worth
the trouble. That's reusable software.

You can do the same thing in your own programs by writing utilities.
Figure 6.1 contains a selection of them. The first two, s ingle? and appendl,
are included to show that even very short utilities can be useful. The former
returns true when its argument is a list of one element,

> (s ing le? ' (a))
T

and the latter is like cons, but adds an element to the end of the list instead
of the front:

> (appendl ' (a b c) >d)
(A B C D)

The next utility, map-int, takes a function and an integer n, and returns
a list of the results of calling the function on the integers from 0 to n-Y

6.4 EXAMPLE: UTILITIES 105

(defun single? (1st)

(and (consp 1st) (null (cdr 1st))))

(defun appendl (1st obj)
(append 1st (list obj)))

(defun map-int (fn n)
(let ((ace nil))
(dotimes (i n)

(push (funcall fn i) ace))
(nreverse ace)))

(defun filter (fn 1st)

(let ((ace nil))

(dolist (x 1st)

(let ((val (funcall fn x)))

(if val (push val ace))))

(nreverse ace)))

(defun most (fn 1st)

(if (null 1st)

(values nil nil)
(let* ((wins (car 1st))

(max (funcall fn wins)))
(dolist (obj (cdr 1st))

(let ((score (funcall fn obj)))
(when (> score max)
(setf wins obj

max score))))
(values wins max))))

Figure 6.1: Utility functions.

This turns out to be especially useful when one is testing code. (One of the
advantages of Lisp's interactive environment is that it's easy to write programs
to test your programs.) If we just wanted a list of the numbers from 0 to 9,
we could say:

> (map-int # ' i d e n t i t y 10)
(0 1 2 3 4 5 6 7 8 9)

106 FUNCTIONS

And if we wanted a list of 10 random numbers between 0 and 99 (inclusive),
we could ignore the parameter and just say:

> (map-int #'(lambda (x) (random 100))
10)

(85 40 73 64 28 21 40 67 5 32)

The definition of map-int illustrates one of the standard Lisp idioms for
building a list. We create an accumulator ace, initially n i l , and push suc
cessive objects onto it. When we're finished, we reverse the accumulator.1

We see the same idiom in f i l t e r . This function takes a function and a
list, and returns all the non-nil values returned by the function as it is applied
to the elements of the list:

> (filter #>(lambda (x)
(and (evenp x) (+ x 10)))

' (1 2 3 4 5 6 7))
(12 14 16)

Another way to think of f i l t e r is as a generalized version of remove-if.
The last function in Figure 6.1, most, returns the element of a list with

the highest score, according to some scoring function. It returns two values,
the winning element, and its score:

> (most #' length ' ((a b) (a b c) (a)))
(A B C)
3

If there is a tie, the element occurring first is returned.
Notice that the last three functions in Figure 6.1 all take functions as

arguments. Lisp makes it convenient to pass functions as arguments, and
that's one of the reasons it is so well suited to bottom-up programming.0 A
successful utility must be general, and it's easier to abstract out the general
when you can pass the specific as a functional argument.

The functions given in this section were general-purpose utilities. They
could be used in almost any kind of program. But you can write utilities for
specific classes of programs as well. Indeed, as we'll see when we get to
macros, you can write your own specialized languages on top of Lisp, if you
want to. If you are trying to write reusable software, this would seem the
surest way to do it.

'In this context, nreverse (described on page 222) does the same thing as reverse, but is
more efficient.

6.5 CLOSURES 107

6.5 Closures

A function can be returned as the value of an expression just like any other
kind of object. Here is a function that takes one argument, and returns a
function to combine arguments of that type:

(defun combiner (x)
(typecase x
(number #'+)
(list #'append)
(t #'list)))

On top of this we can build a general combination function

(defun combine (ferest args)
(apply (combiner (car args))

args))

which takes arguments of any type and combines them in a way appropriate
to their type. (To simplify the example, we assume that the arguments will
all be of the same type.)

> (combine 2 3)
5
> (combine '(a b) '(c d))
(A B C D)

Section 2.10 mentioned that lexical variables are only valid within the
context where they are defined. Along with this restriction comes the promise
that they will continue to be valid for as long as something is using the context.

If a function is defined within the scope of a lexical variable, it can
continue to refer to that variable, even if it is returned as a value outside the
context where the variable was created. Here we create a function that adds
3 to its argument:

> (setf fn (let ((i 3))
#'(lambda (x) (+ x i))))

#<Interpreted-Function C0A51E>
> (funcall fn 2)
5

When a function refers to a variable defined outside it, it's called a free
variable. A function that refers to a free lexical variable is called a closure?
The variable must persist as long as the function does.

2The name "closure" is left over from earlier Lisp dialects. It derives from the way closures
have to be implemented under dynamic scope.

108 FUNCTIONS

A closure is a combination of a function and an environment. Closures
are created implicitly whenever a function refers to something from the sur
rounding lexical environment. This happens quietly in a function like the
following one, but it is the same idea:

(defun add-to-list (num 1st)
(mapcar #5(lambda (x)

(+ x num))
1st))

This function takes a number and a list, and returns a list of the sum of each
element and the number. The variable num within the lambda expression is
free, so in cases like this we're passing a closure to mapcar.

A more conspicuous example would be a function that returned a different
closure each time it was called. The following function returns an adder:

(defun make-adder (n)
#>(lambda (x)

(+ x n)))

It takes a number, and returns a function that adds that number to its argument:

> (setf add3 (make-adder 3))
#<Interpreted-Function C0EBF6>
> (funcall add3 2)
5
> (setf add27 (make-adder 27))
#<Interpreted-Function C0EE4E>
> (funcall add27 2)
29

We can even make several closures share variables. Here we define two
functions that share a counter.

(l e t ((counter 0))
(defun r e s e t ()
(setf counter 0))

(defun stamp ()
(setf counter (+ counter 1))))

Such a pair of functions might be used to create time-stamps. Each time we
call stamp we get a number one higher than the previous, and by calling
r e s e t we can set the counter back to zero:

> (l i s t (stamp) (stamp) (r e se t) (stamp))
(1 2 0 1)

6.6 EXAMPLE: FUNCTION BUILDERS 109

You could do the same thing with a global counter, but this way the counter
is protected from unintended references.

Common Lisp has a built-in function complement that takes a predicate
and returns the opposite predicate. For example:

> (mapcar (complement #,oddp)
' (1 2 3 4 5 6))

(NIL T NIL T NIL T)

With closures such a function is easy to write:

(defun our-complement (f)
#'(lambda (&rest args)

(not (apply f args))))

If you stop to think about it, this is a remarkable little example; yet it is just
the tip of the iceberg. Closures are one of the uniquely wonderful things
about Lisp. They open the door to programming techniques that would be
inconceivable in other languages.0

6.6 Example: Function Builders

Dylan is a hybrid of Scheme and Common Lisp, with a syntax like Pascal.0

It has a large number of functions that return functions: besides complement,
which we saw in the previous section, Dylan includes compose, d i s jo in ,
conjoin, curry, rcurry, and always. Figure 6.2 contains Common Lisp
implementations of these functions, and Figure 6.3 shows some equivalences
that follow from their definitions.

The first, compose, takes one or more functions and returns a new function
in which all of them are applied in succession. That is,

(compose # ' a # 'b # ' c)

returns a function equivalent to

#'(lambda (ferest args) (a (b (apply # ' c a r g s))))

This means that the last argument to compose can take any number of argu
ments, but the other functions all have to take exactly one argument.

Here we build a function that takes the square root of its argument, then
rounds it, then returns a list containing it:

> (mapcar (compose #'list #''round #'sqrt)
'(4 9 16 25))

((2) (3) (4) (5))

110 FUNCTIONS

(defun compose (ferest fns)
(destructuring-bind (fnl . rest) (reverse fns)
#'(lambda (forest args)

(reduce #'(lambda (v f) (funcall f v))
rest
:initial-value (apply fnl args)))))

(defun disjoin (fn ferest fns)
(if (null fns)

fn
(let ((disj (apply #'disjoin fns)))
#'(lambda (ferest args)

(or (apply fn args) (apply disj args))))))

(defun conjoin (fn ferest fns)
(if (null fns)

fn
(let ((conj (apply #>conjoin fns)))
#'(lambda (ferest args)

(and (apply fn args) (apply conj args))))))

(defun curry (fn ferest args)
#'(lambda (ferest args2)

(apply fn (append args args2))))

(defun rcurry (fn ferest args)
#'(lambda (ferest args2)

(apply fn (append args2 args))))

(defun always (x) #'(lambda (ferest args) x))

Figure 6.2: Dylan function builders.

The next two functions, d i s jo in and conjoin, both take one or more
predicates as arguments: d i s jo in returns a predicate that returns true when
any of the predicates return true, and con j oin returns a predicate that returns
true when all of the predicates return true.

> (mapcar (disjoin #'integerp #'symbolp)
'(a "a" 2 3))

(T NIL T T)

6.7 EXAMPLE: FUNCTION BUILDERS 111

cddr =

nth =
atom =

=
<= =

listp =
=

1+ =
ss

1- =

mapcan ^

complement =

(compose #'cdr # 'cdr)
(compose #'car #'nthcdr)

(compose #'not #

(rcurry #'typep
(disjoin #'< #' =

(disjoin #'null
(rcurry #'typep

(curry #' + 1)

(rcurry #' + 1)

(rcurry #>- 1)
(compose (curry
(curry #'compose

Figure 6.3: Some

'consp) 1

'atom)

)
#'consp)

'list)

#'apply #'nconc) #'mapcar)

#'not)

i equivalences.

> (mapcar (conjoin #'integerp #'oddp)
'(a "a" 2 3))

(NIL NIL NIL T)

If predicates are considered as defining sets, d i s j oin returns the union of its
arguments, and conjoin returns the intersection.

The functions curry and rcurry ("right curry") are similar in spirit
to make-adder in the previous section. Both take a function and some of
the arguments to it, and return a new function that expects the rest of the
arguments. Either of the following is equivalent to (make-adder 3) :

(curry #'+ 3)
(rcurry #'+ 3)

The difference between curry and rcurry becomes evident when the func
tion is one for which the order of arguments matters. If we curry -, we get a
function that subtracts its argument from a certain number,

> (funcall (curry # ' - 3) 2)
1

while if we rcurry -, we get a function that subtracts a certain number from
its argument:

> (funcall (rcurry # ' - 3) 2)
-1

Finally, always is the Common Lisp function constantly. It takes an
argument and returns a function that returns it. Like identity, it is useful
mainly in situations where functional arguments are required.

112 FUNCTIONS

6.7 Dynamic Scope

Section 2.11 distinguished between local and global variables. The real
distinction here is between lexical variables, which have lexical scope, and
special variables, which have dynamic scope. But it's almost the same
distinction, because local variables are nearly always lexical variables, and
global variables are always special variables.

Under lexical scope, a symbol refers to the variable that has that name in
the context where the symbol appears. Local variables have lexical scope by
default. So if we define a function in an environment where there is a variable
called x,

(l e t ((x 10))
(defun foo ()

x))

then the x in the body will refer to that variable, regardless of any x that might
exist where foo is called:

> (l e t ((x 20)) (foo))
10

With dynamic scope, we look for a variable in the environment where the
function is called, not in the environment where it was defined.0 To cause
a variable to have dynamic scope, we must declare it to be spec ia l in any
context where it occurs. If we defined foo instead as

(l e t ((x 10))
(defun foo ()

(declare (spec ia l x))
x))

then the x within the function will no longer refer to the lexical variable
existing where the function was defined, but will refer to whatever special x
exists at the time the function is called:

> (l e t ((x 20))
(declare (spec ia l x))
(foo))

20

A dec la re can begin any body of code where new variables are created.
The spec i a l declaration is unique, in that it can change the way a program
behaves. Chapter 13 discusses other kinds of declarations. All other declara
tions are simply advice to the compiler; they may make a program run faster,
but they will not change what it does.

6.8 COMPILATION 113

Global variables established by calling se t f at the toplevel are implicitly
special:

> (setf x 30)
30
> (foo)
30

Within a file of code, it makes a program clearer if you don't rely on the
implicit special declaration, and instead use def parameter.

Where is dynamic scope useful? Usually it is used to give some global
variable a new value temporarily. For example, there are 11 global variables
that control the way objects are printed, including *pr in t -base*, which is
10 by default. If you want to display numbers in hexadecimal (base 16), you
can do it by rebinding *pr int -base*:

> (l e t ((*pr in t -base* 16))
(princ 32))

20
32

Two things are displayed here: the output generated by pr inc , and the value
it returns. They represent the same number, displayed first in hexadecimal
because *pr in t -base* was 16 when it was printed, and the second time in
decimal because, outside the l e t expression, *pr in t -base* reverts to its
previous value, 10.

6.8 Compilation

Common Lisp functions can be compiled either individually or by the file. If
you just type a def un expression into the toplevel,

> (defun foo (x) (+ x 1))
FOO

many implementations will create an interpreted function. You can check
whether a function is compiled by passing it to compiled-f unct ion-p:

> (compiled-function-p #'foo)
NIL

If you give the name of foo to compile

> (compile 'foo)
FOO

114 FUNCTIONS

its definition will be compiled, and the interpreted definition will be replaced
by the compiled one. Compiled and interpreted functions behave the same,
except with respect to compiled-f unction-p.

You can also give lists as arguments to compile. This use of compile is
discussed on page 161.

There is one kind of function you can't give as an argument to compile:
a function like stamp or r e s e t that was typed into the toplevel within a
distinct lexical context (e.g. a l e t) . 3 It would be ok to define these functions
within a file, and then compile and load the file. The restriction is imposed
on interpreted code for implementation reasons, not because there's anything
wrong with defining functions in distinct lexical environments.

The usual way to compile Lisp code is not to compile functions individ
ually, but to compile whole files with compile-f i l e . This function takes a
filename and creates a compiled version of the source file—typically with the
same base name but a different extension. When the compiled file is loaded,
compiled-f unct ion-p should return true for all the functions defined in
the file.

When one function occurs within another, and the containing function is
compiled, the inner function should also be compiled. So when make-adder
(page 108) is compiled, it will return compiled functions:

> (compile 'make-adder)
MAKE-ADDER
> (compiled-function-p (make-adder 2))
T

6.9 Using Recursion

Recursion plays a greater role in Lisp than in most other languages. There
seem to be three main reasons why:

1. Functional programming. Recursive algorithms are less likely to in
volve side-effects.

2. Recursive data structures. Lisp's implicit use of pointers makes it easy
to have recursively defined data structures. The most common is the
list: a list is either n i l , or a cons whose cdr is a list.

3. Elegance. Lisp programmers care a great deal about the beauty of their
programs, and recursive algorithms are often more elegant than their
iterative counterparts.

3In pre-ANSl Common Lisps, the first argument to compile also could not be a function that
was already compiled.

6.9 USING RECURSION 115

Students sometimes find recursion difficult to understand at first. But as
Section 3.9 pointed out, you don't have to think about all the invocations of
a recursive function if you want to judge whether or not is correct.

The same is true if you want to write a recursive function. If you can
describe a recursive solution to a problem, it's usually straightforward to
translate your solution into code. To solve a problem using recursion, you
have to do two things:

1. You have to show how to solve the problem in the general case by
breaking it down into a finite number of similar, but smaller, problems.

2. You have to show how to solve the smallest version of the problem—the
base case—by some finite number of operations.

If you can do this, you're done. You know that a finite problem will get
solved eventually, because each recursion makes it smaller, and the smallest
problem takes a finite number of steps.

For example, in the following recursive algorithm for finding the length
of a proper list, we find the length of a smaller list on each recursion:

1. In the general case, the length of a proper list is the length of its cdr
plus 1.

2. The length of an empty list is 0.

When this description is translated into code, the base case has to come
first; but when formulating recursive algorithms, one usually begins with the
general case.

The preceding algorithm is explicitly described as a way of finding the
length of a proper list. When you define a recursive function, you have to
be sure that the way you break up the problem does in fact lead to smaller
subproblems. Taking the cdr of a proper list yields a smaller subproblem for
length, but-taking the cdr of a circular list would not.

Here are two more examples of recursive algorithms. Again, both assume
finite arguments. Notice in the second that we break the problem into two
smaller problems on each recursion:

member Something is a member of a list if it is the first element, or a
member of the cdr. Nothing is a member of the empty list.

copy-tree The copy-tree of a cons is a cons made of the copy-t ree
of its car, and the copy-t ree of its cdr. The copy-t ree of
an atom is itself.

Once you can describe an algorithm this way, it is a short step to writing a
recursive definition.

116 FUNCTIONS

Some algorithms are most naturally expressed in such terms and some
are not. You would have to bend over backwards to define our-copy-tree
(page 41) without using recursion. On the other hand, the iterative version of
show-squares on page 23 is probably easier to understand than the recursive
version on page 24. Sometimes it may not be obvious which form will be
more natural until you try to write the code.

If you're concerned with efficiency, there are two more issues to consider.
One, tail-recursion, will be discussed in Section 13.2. With a good compiler
there should be little or no difference in speed between a tail-recursive function
and a loop. However, if you would have to go out of your way to make a
function tail-recursive, it may be better just to use iteration.

The other issue to bear in mind is that the obvious recursive algorithm is
not always the most efficient. The classic example is the Fibonacci function.
It is defined recursively,

1. Fib(0) = F ib(l)= l .

2. Fib(n) = Fib(n-1) + Fib(rc-2).

but the literal translation of this definition,

(defun f i b (n)
(i f « = n 1)

1
(+ (f ib (- n 1))

(f ib (- n 2)))))

is appallingly inefficient. The same computations are done over and over. If
you ask for (f ib 10), the function computes (f ib 9) and (f ib 8). But
to compute (f ib 9), it has to compute (f ib 8) again, and so on.

Here is an iterative function that computes the same result:

(defun f i b (n)
(do ((i n (- i 1))

(f l 1 (+ f l f2))
(f2 1 f l))

(« = i 1) f l)))

The iterative version is not as clear, but it is far more efficient. How often does
this kind of thing happen in practice? Very rarely—that's why all textbooks
use the same example—but it is something one should be aware of.

EXERCISES 117

Summary

1. A named function is a function stored as the symbol-function of a
symbol. The def un macro hides such details. It also allows you to
define documentation strings, and specify how se t f should treat calls.

2. It is possible to define local functions, similar in spirit to local variables.

3. Functions can have optional, rest, and keyword parameters.

4. Utilities are additions to Lisp. They are an example of bottom-up
programming on a small scale.

5. Lexical variables persist as long as something refers to them. Closures
are functions that refer to free variables. You can write functions that
return closures.

6. Dylan provides functions for building functions. Using closures, it's
easy to implement them in Common Lisp.

7. Special variables have dynamic scope.

8. Lisp functions can be compiled individually, or (more usually) by the
file.

9. A recursive algorithm solves a problem by dividing it into a finite
number of similar, but smaller, problems.

Exercises

1. Define a version of tokens (page 67) that takes : t e s t and : s t a r t
arguments defaulting to # ' cons t i tuen t and 0 respectively.

2. Define a version of b in-search (page 60) that takes :key, : t e s t ,
: s t a r t , and : end arguments with the usual meanings and defaults.

3. Define a function that takes any number of arguments and returns the
number of arguments passed to it.

4. Modify most (page 105) to return, as two values, the two highest-
scoring elements of a list.

5. Define remove-if (no keywords) in terms of f i l t e r (page 105).

6. Define a function that takes one argument, a number, and returns the
greatest argument passed to it so far.

118 FUNCTIONS

7. Define a function that takes one argument, a number, and returns true
if it is greater than the argument passed to the function the last time it
was called. The function should return n i l the first time it is called.

8. Suppose expensive is a function of one argument, an integer between
0 and 100 inclusive, that returns the result of a time-consuming com
putation. Define a function frugal that returns the same answer, but
only calls expensive when given an argument it has not seen before.

9. Define a function like apply, but where any number printed out before
it returns will be printed, by default, in octal (base 8).

7

Input and Output

Common Lisp has powerful I/O facilities. For input, along with the usual
functions for reading characters, we get read, which includes a complete
parser. For output, along with the usual functions for writing characters,
we get format, which is almost a language in its own right. This chapter
introduces all the basic concepts.

There are two kinds of streams, character streams and binary streams.
This chapter describes operations on character streams; binary streams are
covered in Section 14.2.

7.1 Streams

Streams are Lisp objects representing sources and/or destinations of charac
ters. To read from or write to a file, you open it as a stream. But streams are
not identical with files. When you read or print at the toplevel, you also use
a stream. You can even create streams that read from or write to strings.

By default, input is read from the stream * s tandard- input*. The
default place for output is *standard-output*. Initially they will probably
be the same place: a stream representing the toplevel.

Already we have seen read and format used to read from and print to the
toplevel. The former takes an optional argument, which should be a stream,
and defaults to * s tandard-input*. The first argument to format can also
be a stream, but when it is t , the output is sent to * s tandard-output*. So
what we have been doing so far is using the defaults. We could do the same
I/O operations on any stream.

119

120 INPUT AND OUTPUT

A pathname is a portable way of specifying a file. A pathname has
six components: host, device, directory, name, type, and version. You can
make one by calling make-pathname with one or more of the corresponding
keyword arguments. In the simplest case, you could just specify the name
and let the rest of the pathname default:

> (se t f path (make-pathname :name "myfile"))
#P, ,myfile"

The basic function for opening a file is open. It takes a pathname1 and
a large number of optional keyword arguments, and if successful, returns a
stream that points to the file.

You specify how you intend to use a stream when you create it. The
: d i r e c t i o n argument signals whether you are going to write to the stream,
read from it, or both. The three corresponding values are : input, : output,
and : io. If the stream is used for output, the : i f - e x i s t s argument says what
to do if the destination file already exists; usually it should be : supersede.
So to create a stream on which you can write to the file "myfile", you might
say:

> (se t f s t r (open path - .direction :output
: i f - e x i s t s :supersede))

#<Stream C017E6>

The printed representation of streams is implementation-dependent.
Now if we give this stream as the first argument to format, it will print

to the stream instead of the toplevel:

> (format s t r "Something"0/,")
NIL

If we look at the file at this point, the output may or may not be there. Some
implementations save up output to write in chunks. It may not all appear until
we close the stream:

> (c lose s t r)
NIL

Always close a file when you are finished using it; nothing is guaranteed
about its contents until you do. Now if we look in the file "myfile", there
should be single line:

Something

You can give a string instead of a pathname, but this is not portable.

7.2 INPUT 121

If we just want to read from a file, we open a stream with : d i r e c t i o n
:input:

> (setf s t r (open path : d i r e c t i o n : inpu t))
#<Stream C01C86>

We can use any input function on a file. Section 7.2 describes input in more
detail. Here as an example we will use r e a d - l i n e to read a line of text from
the file:

> (read-line str)

"Something"

NIL

> (close str)

NIL

Remember to close a file when you're finished reading from it.
Much of the time one does not use open and c lose directly to do file I/O.

The wi th-open-f i le macro is often more convenient. Its first argument
should be a list containing a variable name followed by arguments you might
give to open. After this it takes a body of code, which is evaluated with
the variable bound to a stream created by passing the remaining arguments to
open. Afterward the stream is automatically closed. So our entire file-writing
operation could be expressed:

(wi th-open-f i le (s t r path : d i r e c t i o n :output
: i f - e x i s t s :supersede)

(format s t r "Something"0/."))

The with-open-f i l e macro puts the c lose within an unwind-protect
(page 92), so the file is guaranteed to get closed, even if an error interrupts
the evaluation of the body.

7.2 Input

The two most popular input functions are r e a d - l i n e and read. The former
reads all the characters up to a newline, returning them in a string. It takes
an optional stream argument; if the stream is omitted, it will default to
standard-input:

> (progn
(format t "Please enter your name: ")

(read-line))

Please enter your name: Rodrigo de Bivar

"Rodrigo de Bivar"

NIL

122 INPUT AND OUTPUT

This is the function to use if you want verbatim input. (The second return value
is true only if r e a d - l i n e ran out of input before encountering a newline.)

In the general case, r e a d - l i n e takes four optional arguments: a stream;
an argument to tell whether or not to cause an error on encountering end-
of-file; what to return instead if the previous argument is n i l ; and a fourth
argument (discussed on page 235) that can usually be ignored.

So to display the contents of a file at the toplevel, we might use the
following function:

(defun pseudo-cat (file)

(with-open-file (str file rdirection :input)

(do ((line (read-line str nil 'eof)

(read-line str nil 'eof)))

((eql line 'eof))

(format t "~A~0/.M line))))

If you want input parsed into Lisp objects, use read. This function reads
exactly one expression, and stops at the end of it. So it could read less than
a line or more than a line. And of course what it reads has to be valid Lisp
syntax.

If we use read at the toplevel, it will let us use as many newlines as we
want within an expression:

> (read)
(a
b
c)
(A B C)

On the other hand, if we type several expressions on a single line, read will
stop processing characters after the first, leaving the remaining characters to
be picked up by whatever reads next from this stream. So if in response to
the prompt printed by ask-number (page 20) we type several expressions on
a line, the following will happen:

> (ask-number)
Please enter a number, a b

Please enter a number. Please enter a number. 43

43

Two successive prompts are printed on the second line. The first call to read
returns a, which is not a number, so the function asks again for a number. But
the first read only read up to the end of a. So the next call to read returns b,
causing another prompt.

7.3 OUTPUT 123

You may want to avoid using read directly to process user input. The
preceding function would be better off if it used r e a d - l i n e to get what the
user typed, then called read-f rom-s t r ing on the resulting string.0 This
function takes a string and returns the first expression read from it:

> (read-from-str ing "a b c")
A
2

It also returns a second value, a number indicating the position in the string
at which it stopped reading.

In the general case, read-f rom-st r ing can take two optional and three
keyword arguments. The two optional arguments are the third and fourth
arguments to read: whether an end-of-file (or in this case string) should cause
an error, and if not, what to return instead. The keyword parameters : s t a r t
and : end can be used to delimit the portion of the string read.

All these input functions are defined in terms of the primitive read- char,
which reads a single character. It takes the same four optional arguments
as read and r ead - l ine . Common Lisp also defines a function called
peek-char, which is like read-char but does not remove the character
from the stream.

7.3 Output

The three simplest output functions are p r i n l , pr inc , and t e r p r i . For
all three the last argument is an optional stream argument, which defaults to
standard-output.

The difference between p r i n l and pr inc is roughly that p r i n l generates
output for programs, and pr inc generates output for people. So, for example,
p r i n l prints the double-quotes around a string, and p r inc doesn't:

> (p r in l "Hello")
"Hello"
"Hello"
> (princ "Hello")
Hello
"Hello"

Both return their first argument—which, incidentally, is displayed by p r i n l .
The function t e r p r i just prints a newline.

It is useful to have these functions as background when explaining the
behavior of the more general format. This function can be used for almost
all output. It takes a stream (or t or n i l) , a format string, and zero or more

124 INPUT AND OUTPUT

additional arguments. The format string may contain format directives, which
are preceded by a ~ (tilde). Some format directives act as placeholders in
the string. Their places will be taken by the representations of the arguments
given after the format string.

If we give t as the first argument, output is sent to * s tandard- output*.
If we give n i l , format returns as a string what it would have printed. For
the sake of brevity we'll do this in all the examples here.

Depending on one's point of view, format is either amazingly powerful
or horribly complex. There are a large number of format directives, only a
few of which most programmers will ever use. Two of the most commonly
used format directives are "A and ~%. (It doesn't matter whether you say
"a or "A, but the latter form is more common because it makes the format
directive stand out.) A ~A is a placeholder for a value, which will be printed
as if by pr inc . A ~V, represents a newline.

> (format nil "Dear ~k,~% Our records indicate..."

"Mr. Malatesta")

"Dear Mr. Malatesta,

Our records indicate..."

Here format has returned a single value, consisting of a string containing a
newline.

The ~S format directive is just like "A, but prints objects as if by p r i n l ,
rather than pr inc :

> (format t "~S ~A" "z" "z")
"z" z
NIL

Format directives can take arguments. ~F, which is used for printing
right-justified floating-point numbers, can take up to five:

1. The total number of characters to be printed. Defaults to the exact
length of the number.

2. The number of digits to print after the decimal. Defaults to all of them.

3. The number of digits to shift the decimal point to the left (thereby
effectively multiplying the number by 10). Defaults to none.

4. The character to print instead of the number if it is too long to fit in
the space allowed by the first argument. If no character is specified, an
over-long number will be printed using as much space as it needs.

5. The character to print to the left before the digits start. Defaults to a
blank.

7.4 EXAMPLE: STRING SUBSTITUTION 125

Here is a rare example with all five arguments:

> (format n i l " " 1 0 , 2 , 0 , ' * , ' F" 26.21875)
26.22"

This is the original number rounded to 2 decimal places, (with the decimal
point shifted left 0 places), right-justified in a field of 10 characters, padded
on the left by blanks. Notice that a character given as an argument is written
as ' *, not the usual #*. Since the number fit in 10 characters, the fourth
argument didn't have to be used.

All these arguments are optional. To use the default you can simply omit
the corresponding argument. If all we want to do is print a number rounded
to two decimal places, we can say:

> (format n i l " ~ , 2 , , , F " 26.21875)
"26.22"

You can also omit a series of trailing commas, so the more usual way to write
the preceding directive would be:

> (format n i l "~,2F" 26.21875)
"26.22"

Warning: When format rounds, it does not guarantee to round up or
to round down. That is, (format n i l "~,1F" 1.25) could yield either
" 1.2" or " 1.3". So if you are using format to display information that the
user expects to see rounded in one particular way (e.g. dollar amounts), you
should round the number explicitly before printing it.

7.4 Example: String Substitution

As an example of I/O, this section shows how to write a simple program to
do string substitution in text files. We're going to write a function that can
replace each instance of a string old in a file with some other string new.
The simplest way to do this is to look at each character in the input file and
compare it to the first character of old. If they don't match, we can just print
the input character straight to the output file. If they do match, we compare
the next input character against the second character of old, and so on. If the
characters are the same all the way to the end of old, we have a successful
match, and we print new to the output file.0

What happens, though, if we get part of the way through old and the match
fails? For example, suppose we are looking for the pattern "abac", and the
input file contains "ababac". The input will seem to match the pattern until
we get to the fourth character, which is c in the pattern and b in the input. At

126 INPUT AND OUTPUT

this point we can write the initial a to the output file, because we know that no
match begins there. But some of the characters that we have read from input
file we still need: for example, the third character, a, does begin a successful
match. So before we can implement this algorithm, we need a place to store
characters that we've read from the input file but might still need.

A queue for storing input temporarily is called a buffer. In this case,
because we know we'll never need to store more than a predetermined number
of characters, we can use a data structure called a ring buffer. A ring buffer
is a vector underneath. What makes it a ring is the way it's used: we store
incoming values in successive elements, and when we get to the end of the
vector, we start over at the beginning. If we never need to store more than
n values, and we have a vector of length n or greater, then we never have to
overwrite a live value.

The code in Figure 7.1 implements operations on ring buffers. The buf
structure has five fields: a vector that will contain the objects stored in the
buffer, and four other fields that will contain indices into the vector. Two of
these indices, s t a r t and end, we would need for any use of ring buffers:
s t a r t points to the first value in the buffer, and will be incremented when
we pop a value; end points to the last value in the buffer, and is incremented
when we insert a new one.

The other two indices, used and new, are something we need to add to
the basic ring buffer for this application. They will range between s t a r t and
end. In fact, it will always be true that

s t a r t < used < new < end

You can think of used and new as being like s t a r t and end for the current
match. When we start a match, used will be equal to s t a r t and new will
be equal to end. We will increment used as we match successive characters
from the buffer. When used reaches new, we have read all the characters
that were in the buffer at the time the match started. We don't want to use
more than the characters that were in the buffer when the match started, or we
would end up using the same characters multiple times. Hence the distinct
new index, which starts out equal to end, but is not incremented as new
characters are inserted into the buffer during a match.

The function bref takes a buffer and an index, and returns the element
stored at that index. By using the index mod the length of the vector, we can
pretend that we have an arbitrarily long buffer. Calling (new-buf ri) yields
a new buffer able to hold up to n objects.

To insert new values into a buffer, we will use bu f - inse r t . It simply
increments the end and puts the new value at that location. The converse is
buf-pop, which returns the first value in a buffer, then increments its s t a r t .
These two functions would come with any ring buffer.

7.4 EXAMPLE: STRING SUBSTITUTION 127

(defstruct buf

vec (start -1) (used -1) (new -1) (end -1))

(defun bref (buf n)
(svref (buf-vec buf)

(mod n (length (buf-vec buf)))))

(defun (setf bref) (val buf n)

(setf (svref (buf-vec buf)

(mod n (length (buf-vec buf))))

val))

(defun new-buf (len)

(make-buf :vec (make-array len)))

(defun buf-insert (x b)

(setf (bref b (incf (buf-end b))) x))

(defun buf-pop (b)
(progl

(bref b (incf (buf-start b)))
(setf (buf-used b) (buf-start b)

(buf-new b) (buf-end b))))

(defun buf-next (b)

(when (< (buf-used b) (buf-new b))

(bref b (incf (buf-used b)))))

(defun buf-reset (b)

(setf (buf-used b) (buf-start b)

(buf-new b) (buf-end b)))

(defun buf-clear (b)

(setf (buf-start b) -1 (buf-used b) -1

(buf-new b) -1 (buf-end b) -1))

(defun buf-flush (b str)
(do ((i (1+ (buf-used b)) (1+ i)))

((> i (buf-end b)))
(princ (bref b i) str)))

Figure 7.1: Operations on ring buffers.

128 INPUT AND OUTPUT

The next two functions are ones that we need specifically for this ap
plication: buf-next reads a value from a buffer without popping it, and
bu f - r e se t resets the used and new indices to their initial values, s t a r t and
end. If we have already read all the values up to new, buf-next returns n i l .
It won't be a problem distinguishing this from a real value because we're only
going to store characters in the buffer.

Finally, buf - f lush flushes a buffer by writing all the live elements to a
stream given as the second argument, and buf -c lea r empties a buffer by
resetting all the indices to - 1 .

The functions defined in Figure 7.1 are used in Figure 7.2, which contains
the code for string substitution. The function f i l e - s u b s t takes four argu
ments; a string to look for, a string to replace it, an input file, and an output file.
It creates streams representing each of the files, then calls stream-subst to
do the real work.

The second function, s tream-subst , uses the algorithm sketched at the
beginning of this section. It reads from the input stream one character at a
time. Until the input character matches the first element of the sought-for
string, it is written immediately to the output stream (1). When a match
begins, the characters involved are queued in the buffer buf (2).

The variable pos points to the position of the character we are trying to
match in the sought-for string. When and if pos is equal to the length of this
string, we have a complete match, and we write the replacement string to the
output stream, also clearing the buffer (3). If the match fails before this point,
we can pop the first character in the buffer and write it to the output stream,
after which we reset the buffer and start over with pos equal to zero (4).

The following table shows what happens when we substitute "bar ic"
for "baro" in a file containing just the word barbarous:

CHAR
b
a
r
b
a
r
b
a
r
o
u
s

SOURCE
file
file
file
file
buffer
buffer
buffer
file
file
file
file
file

MATCH
b
a
r
o
b
b
b
a
r
o
b
b

CASE

2
•2

2
4
1
1
1
2
2
3
1
1

OUTPUT

b
a
r

b a r i c
u
s

BUFFER
~"b

b a
b a r
b . a r b .
a . r b .
r . b .
r b :
r b : a
r b : a r

7.4 EXAMPLE: STRING SUBSTITUTION 129

1 (defun file-subst (old new filel file2)

1 (with-open-file (in filel .-direction .-input)
(with-open-file (out file2 :direction

:if-exists

(stream-subst old new in out))))

(defun stream-subst (old new in out)

(let* ((pos 0)

(len (length old))

(buf (new-buf len))
(from-buf nil))

(do ((c (read-char in nil :eof)

:output

:supersede)

(or (setf from-buf (buf-next buf)) |

(read-char in nil :eof))))
((eql c :eof))

(cond ((char= c (char old pos))
(incf pos)

(cond ((= pos len)

(princ new out)

(setf pos 0)
(buf-clear buf))

((not from-buf)

(buf-insert c buf))))
((zerop pos)
(princ c out)

(when from-buf
(buf-pop buf)

(buf-reset buf)))

(t
(unless from-buf

(buf-insert c buf))

(princ (buf-pop buf) out)

(buf-reset buf)

(setf pos 0))))
(buf-flush buf out)))

Figure 7.2: String substitution.

; 3

; 2

; l

; 4

130 INPUT AND OUTPUT

The first column is the current character—the value of c; the second shows
whether it was read from the buffer or directly from the input stream; the third
shows the character it has to match—the posth element of old; the fourth
shows which case is evaluated as a result; the fifth shows what is thereby
written to the output stream; and the last column shows the contents of the
buffer afterwards. In the last column, the positions of used and new are
shown by a period after the character they point to; when both point to the
same position, it is indicated by a colon.

If the file " t e s t l " contained the following text

The struggle between Liberty and Authority is the most

conspicuous feature in the portions of history with which

we are earliest familiar, particularly in that of Greece,

Rome, and England.

then after evaluating (file-subst " th" " z" "testl" "test2M),the

file "test2" would read:

The struggle between Liberty and Authority is ze most
conspicuous feature in ze portions of history with which
we are earliest familiar, particularly in zat of Greece,
Rome, and England.

To keep this example as simple as possible, the code shown in Figure 7.2
just replaces one string with another. It would be easy to generalize it to
search for a pattern instead of a literal string. All you would have to do
is replace the call to char= with a call to whatever more general matching
function you wanted to write.

7.5 Macro Characters

A macro character is a character that gets special treatment from read. A
lowercase a, for example, is ordinarily handled just like a lowercase b, but a
left parenthesis is something different: it tells Lisp to begin reading a list.

A macro character or combination of macro characters is also known as a
read-macro. Many of Common Lisp's predefined read-macros are abbrevia
tions. Quote, for example: as an expression like ' a is read, it is expanded by
the reader into a list, (quote a) . When you type quoted expressions into the
toplevel, they are evaluated as soon as they are read, so ordinarily you never
see this transformation. You can make it visible by invoking read explicitly:

> (car (read-from-string '"a"))

QUOTE

SUMMARY 131

Quote is unusual for a read-macro in that it's expressed as a single char
acter. With a limited character set, you can only have so many one-character
read-macros; most of the read-macros in Common Lisp are expressed using
two or more characters.

Such read-macros are called dispatching read-macros, and the first char
acter is called the dispatching character. All the predefined dispatching
read-macros use the sharp sign, #, as the dispatching character. We have
seen quite a few of them already. For example, #' is an abbreviation for
(function . . .) in the same way that ' is an abbreviation for (quote . . .) .

Other dispatching read-macros we've seen include # (. . .) , which yields
a vector; #nA(...) which yields an array; #\, which yields a character; and
#S(n . . .) , which yields a structure. When objects of each of these types
are displayed by p r i n l (or format with ~S), they are displayed using the
corresponding read-macros.2 This means that you can write such objects out
and read them back in:

> (let ((*print-array* t))

(vectorp (read-from-string (format nil "~S"

(vector 1 2)))))
T

Of course, what we get back is not the same vector, but a new one with the
same elements.

Not all objects are displayed in a distinct, readable form. Both functions
and hash tables, for example, tend to be displayed as #<. . . >. In fact, #<
is also a read-macro, but one that exists specifically to cause an error if it is
encountered by read. Functions and hash tables can't be written out and read
back in, and this read-macro ensures that users will have no illusions on this
point.3

When you're defining your own representations for things (the print-
functions of structures, for example), you should keep this principle in mind.
Either use a representation that can be read back in, or use #<. . . >.

Summary

1. Streams are sources of input or destinations of output. In character
streams, the input and output consists of characters.

2. The default stream points to the toplevel. New streams can be made by
opening files.

2To get vectors and arrays displayed this way, set *p r in t - a r r ay* to t .
3Lisp couldn't just use sharp-quote to represent functions, because sharp-quote by itself offers

no way to represent a closure.

132 INPUT AND OUTPUT

3. You can get input as parsed objects, as strings of characters, or as
individual characters.

4. The format function provides elaborate control over output.

5. To substitute one string for another in a text file, you have to read
characters into a buffer.

6. When read encounters a macro character like ' , it calls the associated
function.

Exercises

1. Define a function that takes a filename and returns a list of strings
representing each line in the file.

2. Define a function that takes a filename and returns a list of the expres
sions in the file.

3. Suppose that in some format for text files, comments are indicated by
a °/, character. Everything from this character to the end of the line is
ignored. Define a function that takes two filenames, and writes to the
second file a copy of the first, minus comments.

4. Define a function that takes a two-dimensional array of floats and
displays it in neat columns. Each element should be printed with two
digits after the decimal point, in a field 10 characters wide. (Assume
all will fit.) You will need array-dimensions (page 361).

5. Modify s t ream-subst to allow wildcards in the pattern. If the char
acter + occurs in old, it should match any input character.

6. Modify s t ream-subst so that the pattern can include an element that
matches any digit character, an element that matches any alphanumeric
character, or an element that matches any character. The pattern must
also be able to match any specific input character. (Hint: old can no
longer be a string.)

8

Symbols

We've used symbols quite a bit already. There is more to them than meets
the eye. It may be best not to bother about the underlying mechanism at
first. You can use symbols as data objects and as names for things without
understanding how the two roles are related. But at a certain point, it's useful
to stop and consider what's really going on. This chapter explains the details.

8.1 Symbol Names

Chapter 2 described symbols as variable names existing as objects in their
own right. But the range of possible Lisp symbols is broader than the range
of variable names allowed in most languages. In fact, a symbol can have any
string as its name. You can get the name of a symbol by calling symbol-name:

> (symbol-name 'abc)
"ABC"

Notice that the name of this symbol is all uppercase letters. By default
Common Lisp converts all alphabetic characters in a symbol's name into
uppercase as they are read. This means that, by default, Common Lisp is not
case-sensitive:

> (eql 'aBc 'Abe)
T
> (CaR ' (a b c))
A

133

134 SYMBOLS

There is a special syntax for referring to symbols whose names contain
whitespace or other things that might otherwise be significant to the reader.
Any sequence of characters between vertical bars is treated as a symbol. You
can put anything in the name of a symbol this way:

> (l i s t ' IL i sp 1.51 Ml Mabel MABCl)
(ILisp 1.51 II label ABC)

When the name of such a symbol is read, there is no case conversion, and
macro characters are treated just like other characters.

So which symbols can you refer to without using vertical bars? Essen
tially, any symbol whose name is neither a number nor contains characters
significant to the reader. A quick way to find out if you could refer to a symbol
without using vertical bars is to see how Lisp prints it. If Lisp represents a
symbol without vertical bars, as it did the last symbol in the list above, then
you can too.

Remember that the vertical bars are a special syntax for denoting symbols.
They are not part of the symbol's name:

> (symbol-name Ma b c |)
"a b c"

(If you want to use a vertical bar in the name of a symbol, you can do it by
putting a backslash before the bar.)

8.2 Property Lists

In Common Lisp every symbol has a property-list, or plist. The function get
takes a symbol and a key of any type, and returns the value associated with
that key in the symbol's property list:

> (get ' a l i z a r i n ' co lo r)
NIL

It uses eql to compare keys. If the specified property isn't found, get returns
n i l .

To associate a value with a key you can use se t f with get:

> (se t f (get ' a l i z a r i n ' co lo r) ' r ed)
RED
> (get ' a l i z a r i n ' co lo r)
RED

Now the color property of a l i z a r i n is red.

8.4 SYMBOLS ARE BIG 135

package
- • (color red)

Figure 8.1: Structure of a symbol.

The function symbol-pl is t returns the property list of a symbol:

> (setf (get }alizarin 'transparency) 'h igh)
HIGH
> (symbol-pl is t ' a l i z a r i n)
(TRANSPARENCY HIGH COLOR RED)

Notice that property lists are not represented as assoc-lists, though they are
used the same way.

In Common Lisp, property lists aren't used very much. They have largely
been superseded by hash tables (Section 4.8).

8.3 Symbols Are Big

Symbols are created implicitly when we type their names, and when they
are displayed the name is all we see. Under the circumstances it's easy to
think that the symbol is what we see, and nothing more. But there is more to
symbols than meets they eye.

From the way we use them and the way they look, it might seem that
symbols would be small objects, like integers. In fact a symbol is a substantial
object, more like the kind of structure that might be defined by def s t r u c t .
A symbol can have a name, a home package, a value as a variable, a value as
a function, and a property list. Figure 8.1 shows how symbols are represented
internally.

Few programs use so many symbols that it would be worth using some
thing else to save space. But it is worth bearing in mind that symbols are real
objects, and not just names. When two variables are set to the same symbol,
it's the same as when two variables are set to the same list: both variables
have pointers to the same object.

136 SYMBOLS

8.4 Creating Symbols

Section 8.1 showed how to get from symbols to their names. It's also possible
to go in the other direction, from strings to symbols. This gets a little more
complicated, because we have to introduce the topic of packages.

Conceptually, packages are symbol-tables, mapping names to symbols.
Every ordinary symbol belongs to a particular package. A symbol that belongs
to a package is said to be interned in that package. Functions and variables
have symbols as their names. Packages enforce modularity by restricting
which symbols are accessible, and thus, which functions and variables one
can refer to.

Most symbols are interned when they are read. The first time you type the
name of a new symbol, Lisp will create a new symbol object and intern it in
the current package (which by default will be common-lisp-user). But you
can also intern a symbol by giving a string and an optional package argument
to in te rn :

> (i n t e r n "RANDOM-SYMBOL")
RANDOM-SYMBOL
NIL

The package argument defaults to the current package, so the preceding
expression returns the symbol in the current package whose name is the
string "RANDOM-SYMBOL", creating such a symbol if it doesn't already exist.
The second return value shows whether the symbol already existed; in this
case, it didn't.

Not all symbols are interned. It can sometimes be useful to have an
uninterned symbol, for the same reason that it can be useful to have an
unlisted phone number. Uninterned symbols are called gensyms. We'll see
the point of gensyms when we come to macros in Chapter 10.

8.5 Multiple Packages

Larger programs are often divided up into multiple packages. If each part of
a program is in its own package, then someone working on one part of the
program will be able to use a symbol as the name of a function or variable
without worrying that the name is already used elsewhere.

In languages that don't provide a way to define multiple namespaces, the
programmers working on a big project usually work out some convention to
ensure that they don't use the same names. For example, the programmer
writing the display code might only use names beginning with disp_, while
the programmer writing the math code only used names beginning with

8.6 KEYWORDS 137

math_. So if the math code included a function to do fast Fourier transforms,
it might be called math_f f t .

Packages just provide a way to do this automatically. If you define your
functions in a separate package, you can use whatever names you like. Only
symbols that you explicitly export will be visible in other packages, and there
they will usually have to be preceded (or qualified) by the name of the package
that owns them.

For example, suppose a program is divided into two packages, math and
disp. If the symbol f f t is exported by the math package, then code in
the disp package will be able to refer to it as math:ff t . Within the math
package, it will be possible to refer to it as simply f f t .

Here is what you might put at the top of a file containing a distinct package
of code:

(defpackage "MY-APPLICATION"

(:use "COMMON-LISP" "MY-UTILITIES")

(:nicknames "APP")

(:export "WIN" "LOSE" "DRAW"))

(in-package my-application)

The defpackage defines a new package called my-application.1 It uses
two other packages, common-lisp and m y - u t i l i t i e s , which means that
symbols exported by these packages will be accessible without package qual
ifiers. Most packages will use common-lisp—you don't want to have to
qualify the names of the built-in Lisp operators and variables.

The my-applicat ion package itself exports just three symbols: win,
lose, and draw. Since the call to defpackage gave my-appl icat ion the
nickname app, code in other packages will be able to refer to them as e.g.
app: win.

The defpackage is followed by an in-package that makes the cur
rent package be my-application. All the unqualified symbols in the rest
of the file will be interned in my-application—unless there is another
in-package later on. When a file has been loaded, the current package is
always reset to the value it had before the load began.

8.6 Keywords

Symbols in the keyword package (known as keywords) have two unique
properties: they always evaluate to themselves, and you can refer to them

1 The names in the call to defpackage are all uppercase because, as mentioned in Section 8.1,
symbol names are converted to uppercase by default.

138 SYMBOLS

anywhere simply as : x, instead of keyword: x. When keyword parame
ters were first introduced on page 44, it might have seemed more natural
for the call to read (member ; (a) ' ((a) (z)) t e s t : # ' equal) rather
than (member ' (a) ' ((a) (z)) : t e s t # ' equal) . Now we see why the
unnatural-looking second form is actually the correct one. The colon prefixed
to t e s t is just to identify it as a keyword.

Why use keywords instead of ordinary symbols? Because they are acces
sible anywhere. A function that takes symbols as arguments should usually
be written to expect keywords. For example, this function could safely be
called from any package:

(defun noise (animal)
(case animal
(:dog :woof)
(:cat :meow)
(:pig :oink)))

If it had been written to use ordinary symbols, it would only work when called
from the package in which it was defined, unless the keys were exported as
well.

8.7 Symbols and Variables

One potentially confusing thing about Lisp is that symbols are related to
variables in two very different ways. When a symbol is the name of a special
variable, the value of the variable is stored in a field within the symbol
(Figure 8.1). The symbol-value function refers to that field, so we have a
direct connection between a symbol and the value of the special variable it
represents.

With lexical variables, things are completely different. A symbol used
as a lexical variable is just a placeholder. The compiler will translate it into
a reference to a register or a location in memory. In the eventual compiled
code, there will be no trace of the symbol (unless it is retained somewhere for
use by the debugger). So of course there is no connection between symbols
and the values of the lexical variables they represent; by the time there is a
value, the symbol is gone.

8.8 Example: Random Text

If you're going to write programs that operate on words, it's often a good idea
to use symbols instead of strings, because symbols are conceptually atomic.
Symbols can be compared in one step with eql, while strings have to be
compared character-by-character with s t r i ng -equa l or s t r ing=. As an

8.8 EXAMPLE: RANDOM TEXT 139

example, this section shows how to write a program to generate random text.
The first part of the program will read a sample text (the larger the better),
accumulating information about the likelihood of any given word following
another. The second part will take random walks through the network of
words built in the first, after each word making a weighted random choice
among the words that followed it in the original sample.

The resulting text will always be locally plausible, because any two words
that occur together will be two words that occurred together in the input text.
What's surprising is how often you can get entire sentences—sometimes
entire paragraphs—that seem to make sense.

Figure 8.2 contains the first half of the program, the code for reading
the sample text. The data derived from it will be stored in the hash table
words. The keys in this hash table will be symbols representing words,
and the values will be assoc-lists like the following:

((I s in l . 1) (|wide I . 2) (I s i g h t s I . 1))

This is the value associated with the key I discover I when Milton's Paradise
Lost is used as the sample text. It indicates that "discover" was used four
times in the poem, being twice followed by "wide" and once each by "sin"
and "sights".

The function r ead - t ex t accumulates this information. It takes a path
name, and builds an assoc-list like the one shown above for each word
encountered in the file. It works by reading the file one character at a time,
accumulating words in the string buffer. With maxword = 100, the program
will be able to read words of up to 100 letters, which is sufficient for English.

As long as the next character is a letter (as determined by a lpha- char-p)
or an apostrophe, we keep accumulating characters. Any other character ends
the word, whereupon the corresponding symbol is sent to see. Several kinds
of punctuation are also recognized as if they were words; the function punc
returns the pseudo-word corresponding to a punctuation character.

The function see registers each word seen. It needs to know the previous
word as well as the one just recognized—hence the variable prev. Initially
this variable is set to the period pseudo-word; after see has been called, it
will always contain the last word sent to the function.

After r ead - t ex t returns, * words* will contain an entry for each word in
the input file. By calling hash- table-count you can see how many distinct
words there were. Few English texts have over 10,000.

Now comes the fun part. Figure 8.3 contains the code that generates text
from the data accumulated by the code in Figure 8.2. The recursive function
genera te - tex t drives the process. It takes a number indicating the number
of words to be generated, and an optional previous word. Using the default
will make the generated text start at the beginning of a sentence.

140 SYMBOLS

(defparameter *words* (make-hash-table :size 10000))

(defconstant maxword 100)

(defun read-text (pathname)

(with-open-file (s pathname :direction

(let ((buffer (make-string maxword))

(pos 0))

(do ((c (read-char s nil :eof)

(read-char s nil :eof)))
((eql c :eof))

(if (or (alpha-char-p c) (char= c

(progn
(setf (aref buffer pos) c)

(incf pos))

(progn
(unless (zerop pos)

•.input)

#V))

(see (intern (string-downcase
(subseq buffer 0 pos))))

(setf pos 0))

(let ((p (punc c)))

(if p (see p)))))))))

(defun punc (c)

(case c

(#\. M.I) (#\, M,l) (#\; M;l)
(#\! M M) (#\? M?l)))

(let ((prev M M))
(defun see (symb)

(let ((pair (assoc symb (gethash prev

(if (null pair)
words))))

(push (cons symb 1) (gethash prev *words*)) |
(incf (cdr pair))))

(setf prev symb)))

Figure 8.2: Reading sample text.

SUMMARY 141

(defun gene ra t e - t ex t (n feoptional (prev M - D)
(if (zerop n)

(t e r p r i)
(l e t ((next

(format t
(generate-

(random-next p rev)))
"~A M next)

- tex t (1 - n) n e x t))))

(defun random-next (prev) |
(l e t * ((choices (gethash prev *words*))

(i (random (reduce # '+ choices |

(do l i s t (pa i r
(if (minusp

(re tu rn

]

:key # ' c d r))))
choices)
(decf i (cdr p a i r)))
(car p a i r))))))

figure 8.3: Generating text.

To get a new word, gene ra t e - t ex t calls random-next with the previous
word. This function makes a random choice among the words that followed
prev in the input text, weighted according to the frequency of each.0

At this point it would be time to give the program a test run. But in
fact you have already seen an example of what it produces: the stanza at the
beginning of this book, which was generated by using Milton's Paradise Lost
as the input text.0

Summary

1. Any string can be the name of a symbol, but symbols created by read
are transformed into uppercase by default.

2. Symbols have associated property lists, which behave like assoc-lists,
though they don't have the same form.

3. Symbols are substantial objects, more like structures than mere names.

4. Packages map strings to symbols. To create an entry for a symbol in a
package is to intern it. Symbols do not have to be interned.

5. Packages enforce modularity by restricting which names you can re
fer to. By default your programs will be in the user package, but
larger programs are often divided into several packages defined for that
purpose.

142 SYMBOLS

6. Symbols can be made accessible in other packages. Keywords are
self-evaluating and accessible in any package.

7. When a program operates on words, it's convenient to represent the
words as symbols.

Exercises

1. Is it possible for two symbols to have the same name but not be eql?

2. Estimate the difference between the amount of memory used to rep
resent the string "F00" and the amount used to represent the symbol
foo.

3. The call to defpackage on page 137 used only strings as arguments.
We could have used symbols instead. Why might this have been
dangerous?

4. Add the code necessary to make the code in Figure 7.1 be in a package
named "RING", and that in Figure 7.2 be in a package named "FILE".
The existing code should remain unchanged.

5. Write a program that can verify whether or not a quote was produced
by Henley (Section 8.8).

6. Write a version of Henley that can take a word and generate a sentence
with that word in the middle of it.

9

Numbers

Number-crunching is one of Common Lisp's strengths. It has a rich set of
numeric types, and its features for manipulating numbers compare favorably
with any language.

9.1 Types

Common Lisp provides four distinct types of numbers: integers, floating
point numbers, ratios, and complex numbers. Most of the functions described
in this chapter work on numbers of any type. A few, explicitly noted, accept
all but complex numbers.

An integer is written as a string of digits: 2001. A floating-point number
can be written as a string of digits containing a decimal point, 253.72, or in
scientific notation, 2.5372e2. A ratio is written as a fraction of integers: 2/3 .
And the complex number a+bi is written as #c (a b), where a and b are any
two real numbers of the same type.

The predicates integerp, f loatp , and complexp return true for num
bers of the corresponding types. Figure 9.1 shows the hierarchy of numeric
types.

Here are some general rules of thumb for determining what kind of number
a computation will return:

1. If a numeric function receives one or more floating-point numbers
as arguments, the return value will be a floating-point number (or
a complex number with floating-point components). So (+ 1.0 2)
evaluates to 3.0, and (+ #c(0 1.0) 2) evaluates to #c(2.0 1.0).

143

144 NUMBERS

number /

/ "

/"A
\ float 4

\ complex

Figure 9.1:

^ ratio
<CT ^ bignum

^ integer < ^
^ ^ fixnum

y short-float

y/^ single-float

\ ^ — double-float

\ long-float

Numeric types.

bit

2. Ratios that divide evenly will be converted into integers. So (/ 10 2)
will return 5.

3. Complex numbers whose imaginary part would be zero will be con
verted into reals. So (+ #c (l -1) #c(2 1)) evaluates to 3.

Rules 2 and 3 apply to arguments as soon as they are read, so:

> (l i s t (r a t i o p 2/2) (complexp #c (l 0)))
(NIL NIL)

9.2 Conversion and Extraction

Lisp provides functions for converting, and extracting components of, the
four kinds of numbers. The function f l o a t converts any real number to a
floating-point number:

> (mapcar # ' f l o a t ' (1 2/3 .5))
(1.0 0.6666667 0.5)

Reducing numbers to integers is not necessarily conversion, because it can
involve some loss of information. The function t runca t e returns the integer
component of any real number:

> (truncate 1.3)
1
0.29999995

9.2 CONVERSION AND EXTRACTION 145

The second return value is the original argument minus the first return value.
(The difference of . 00000005 is due to the inherent inexactitude of floating
point computation.)

The functions floor, ce i l ing , and round also derive integers from their
arguments. Using floor, which returns the greatest integer less than or equal
to its argument, and ce i l ing , which returns the least integer greater than or
equal to its argument, we can generalize mirror? (page 46) to recognize all
palindromes:

(defun palindrome? (x)
(l e t ((mid (/ (length x) 2)))

(equal (subseq x 0 (f loor mid))
(reverse (subseq x (c e i l i n g mid))))))

Like truncate, f loor and c e i l i n g also return as a second value the
difference between the argument and the first return value:

> (floor 1.5)
1
0.5

In fact, we could think of truncate as being defined:

(defun our-truncate (n)

(if (> n 0)

(floor n)

(ceiling n)))

The function round returns the nearest integer to its argument. When
the argument is equidistant from two integers, Common Lisp, like many
programming languages, does not round up. Instead it rounds to the nearest
even digit:

> (mapcar #'round ' (- 2 . 5 -1 .5 1.5 2 .5))
(-2 -2 2 2)

In some numerical applications this is a good thing, because rounding errors
tend to cancel one another out. However, if end-users are expecting your
program to round certain values up, you must provide for this yourself.1 Like
its cousins, round returns as its second value the difference between the
argument and the first return value.

The function mod returns just the second value that f loor would return;
and rem returns just the second value that truncate would return. We used

1 When format rounds for display, it doesn't even guarantee to round to an even or odd digit.
See page 125.

146 NUMBERS

mod on page 94 to determine if one number was divisible by another, and on
page 127 to find the actual position of an element in a ring buffer.

For reals, the function signum returns either 1, 0, or - 1 , depending on
whether its argument is positive, zero, or negative. The function abs returns
the absolute value of its argument. Thus (* (abs x) (signum x)) =x.

> (mapcar #'signum ; (- 2 -0 .0 0.0 0 .5 3))
(-1 -0 .0 0.0 0 1.0 1)

In some implementations -0 .0 may exist in its own right, as above. Func
tionally it makes little difference whether it does or not, because in numeric
code -0 .0 behaves exactly like 0.0.

Ratios and complex numbers are conceptually two-part structures. The
functions numerator and denominator return the corresponding compo
nents of a ratio or integer. (If the number is an integer, the former returns
the number itself and the latter returns 1.) The functions r e a l p a r t and
imagpart return the real and imaginary components of any number. (If the
number isn't complex, the former returns the number itself and the latter
returns zero.)

The function random takes an integer or floating-point number. An
expression of the form (random n) returns a number greater than or equal
to zero and less than n, and of the same type as n.

9.3 Comparison

The predicate = returns true when its arguments are numerically equal—when
the difference between them is zero.

> (= 1 1.0)
T
> (eql 1 1.0)
NIL

It is less strict than eql, which also requires its arguments to be of the same
type.

The predicates for comparing numbers are < (less than) , <= (less than
or equal), = (equal), >= (greater than or equal), > (greater than), and /=
(different). All of them take one or more arguments. With one argument they
all return t . For all except /=, a call with three or more arguments,

(<= w x y z)

is equivalent to the conjunction of a binary operator applied to successive
pairs of arguments:

9.4 ARITHMETIC 147

(and (<= w x) (<= x y) (<= y z))

Since /= returns true if no two of its arguments are =, the expression

(/= w x y z)

is equivalent to

(and (/= w x) (/= w y) (/= w z)
(/= x y) (/= x z) (/= y z))

The specialized predicates zerop, plusp, and minusp take one argument
and return true if it is =, >, and < zero, respectively. These functions do not
overlap. Although -0 .0 (if an implementation uses it) is preceded by a
negative sign, it is = to 0,

> (l i s t (minusp -0 .0) (zerop -0 .0))
(NIL T)

and therefore zerop, not minusp.
The predicates oddp and evenp apply only to integers. The former is true

only of odd integers, and the latter only of even ones.
Of the predicates described in this section, only =, /=, and zerop apply

to complex numbers.
The functions max and min return, respectively, the maximum and mini

mum of their arguments. Both require at least one:

> (l i s t (max 1 2 3 4 5) (min 1 2 3 4 5))
(5 1)

If the arguments to either include floating-point numbers, the type of the
result is implementation-dependent.

9.4 Arithmetic

The functions for addition and subtraction are + and -. Both can take any
number of arguments, including none, in which case they return 0. An
expression of the form (- n) returns — n. An expression of the form

(- x y z)

is equivalent to

(- (- x y) z)

148 NUMBERS

There are also two functions 1+ and 1-, which return their argument plus 1
and minus 1 respectively. The name 1- is a bit misleading, because (1 - x)
returns x - 1, not 1 - x.

The macros incf and decf increment and decrement their argument,
respectively. An expression of the form (incf x ri) is similar in effect to
(se t f x (+ x ri)), and (decf x ri) to (se t f x (- x ri)). In both cases
the second argument is optional and defaults to 1.

The function for multiplication is *. It takes any number of arguments.
When given no arguments it returns 1. Otherwise it returns the product of its
arguments.

The division function, / , expects at least one argument. A call of the form
(/ ri) is equivalent to (/ 1 ri),

> (/ 3)
1/3

while a call of the form

(/ x y z)

is equivalent to

(/ (/ x y) z)

Notice the similarity between - and / in this respect.
When given two integers, / will return a ratio if the first is not a multiple

of the second:

> (/ 365 12)
365/12

If what you're trying to do is find out how long an average month is, for
example, this may give the impression that the toplevel is playing games with
you. In such cases, what you really need is to call f l o a t on a ratio, not / on
two integers:

> (float 365/12)
30.416666

9.5 Exponentiation

To find.*" we call (expt x ri),

> (expt 2 5)
32

9.7 TRIGONOMETRIC FUNCTIONS 149

and to find logrt;t we call (log x n):

> (log 32 2)
5.0

This will ordinarily return a floating-point number.
To find e* there is a distinct function exp,

> (exp 2)
7.389056

and to find a natural logarithm you can just use log, because the second
argument defaults to e:

> (log 7.389056)
2.0

To find roots you can call expt with a ratio as the second argument,

> (expt 27 1/3)
3.0

but for finding square roots the function sq r t should be faster:

> (sqr t 4)
2.0

9.6 Trigonometric Functions

The constant p i is a floating-point representation of IT. Its precision is
implementation-dependent. The functions sin, cos, and t an find the sine,
cosine, and tangent, respectively, of angles expressed in radians:

> (l e t ((x (/ p i 4)))
(l i s t (s in x) (cos x) (tan x)))

(0.7071067811865475d0 0.7071067811865476d0 l.OdO)

These functions all take negative and complex arguments.
The functions as in, acos, and a t an implement the inverse of sine,

cosine, and tangent. For arguments between —1 and 1 inclusive, as in and
acos return real numbers.

Hyperbolic sine, cosine, and tangent are implemented by sinh, cosh, and
tanh, respectively. Their inverses are likewise asinh, acosh, and atanh.

150 NUMBERS

9.7 Representation

Common Lisp imposes no limit on the size of integers. Small integers fit in
one word of memory and are called Jbcnums. When a computation produces an
integer too large to fit in one memory word, Lisp switches to a representation
(a bignum) that uses multiple words of memory. So the effective limit on the
size of an integer is imposed by physical memory, not by the language.

The constants mos t -pos i t ive- f ixnum and most-negative-f ixmim
indicate the largest magnitudes an implementation can represent without
having to use bignums. In many implementations they are:

> (values most-positive-fixnum most-negative-fixnum)

536870911
-536870912

The predicate typep takes an argument and a type name and returns true if
the argument is of the specified type. So,

> (typep 1 'fixnum)
T
> (typep (1+ most-posit ive-fixnum) 'bignum)
T

The limits on the values of floating-point numbers are implementation-
dependent. Common Lisp provides for up to four types of floating-point num
bers: s h o r t - f l o a t , s i n g l e - f l o a t , double-f loat , and long-f loat .
Implementations are not required to use distinct formats for all four types
(and few do).

The general idea is that a short float is supposed to fit in a single word,
that single and double floats are supposed to provide the usual idea of single-
and double-precision floating-point numbers, and that long floats can be
something really big, if desired. But an implementation could perfectly well
implement all four the same way.

You can specify what format you want a floating-point number to be by
substituting the letters s, f, d, or 1 for the e when a number is represented
in scientific notation. (You can use uppercase too, and this is a good idea
for long floats, because 1 looks so much like 1.) So to make the largest
representation of 1.0 you would write 1L0.

Sixteen global constants mark the limits of each format in a given imple
mentation. Their names are of the form m-s-f, where m is most or l eas t , s
is p o s i t i v e or negat ive, and/is one of the four types of float.0

Floating-point underflow and overflow are signalled as errors by Common
Lisp:

> (* most-positive-long-float 10)

Error: floating-point-overflow.

9.8 EXAMPLE: RAY-TRACING 151

9.8 Example: Ray-Tracing

As an example of a mostly numerical application, this section shows how to
write a ray-tracer. Ray-tracing is the rendering algorithm deluxe: it yields
the most realistic images, but takes the most time.

To generate a 3D image, we need to define at least four things: an eye, one
or more light sources, a simulated world consisting of one or more surfaces,
and a plane (the image plane) that serves as a window onto this world. The
image we generate is the projection of the world onto a region of the image
plane.

What makes ray-tracing unusual is the way we find this projection: we go
pixel-by-pixel along the image plane, tracing the light back into the simulated
World. This approach brings three main advantages: it makes it easy to get
real-world optical effects like transparency, reflected light, and cast shadows;
it allows us to define the simulated world directly in terms of whatever geo
metric objects we want, instead of having to construct them out of polygons;
and it is straightforward to implement.

Figure 9.2 contains some math utilities we are going to need in our ray-
tracer. The first, sq, just returns the square of its argument. The next, mag,
returns the length of a vector given its x, y, and z components. This function
is used in the next two. We use it in un i t -vec to r , which returns three values
representing the components of a unit vector with the same direction as the
vector whose components are x, y, and z:

> (mul t ip l e -va lue -ca l l #'mag (un i t -vec to r 23 12 47))
1.0

And we use mag in d is tance , which returns the distance between two points
in 3-space. (Defining the point structure to have a : cone-name of n i l
means that the access functions for the fields will have the same names as the
fields: x instead of point-x , for example.)

Finally, minroot takes three reals a, b, and c, and returns the smallest
real x for which ax2 H- b;t + c = 0. When a is nonzero, the roots of this
equation are yielded by the familiar formula:

- b ± \ /b2 - 4ac
x = £

Figure 9.3 contains code defining a minimal ray-tracer. It generates black
and white images illuminated by a single light source, at the same position as
the eye. (The results thus tend to look like flash photographs.)

The surface structure will be used to represent the objects in the simu
lated world. More precisely, it will be included in the structures defined to
represent specific kinds of objects, like spheres. The surface structure itself
contains only a single field: a color ranging from 0 (black) to 1 (white).

152 NUMBERS

(defun sq (x) (* x x))

(defun mag (x y z)
(sqrt (+ (sq x) (sq y) (sq z))))

(defun unit-vector (x y z)
(l e t ((d (mag x y z)))

(values (/ x d) (/ y d) (/ z d))))

(defstruct (point (:cone-name n i l))
x y z)

(defun distance (pi p2)
(mag (- (x pi) (x p2))

(- (y pi) (y p2))
(- (z pi) (z p2))))

(defun minroot (a b c)
(i f (zerop a)

(/ (- c) b)
i (l e t ((d isc (- (sq b) (* 4 a c))))

(unless (minusp disc)
(l e t ((d i scr t (sqrt d i s c)))

(min (/ (+ (- b) d iscrt) (* 2
(/ (- (- b) d iscrt) (* 2

Figure 9.2: Math utilities.

a))
a))))))))

The image plane will be the plane defined by the x- and y-axes. The eye
will be on the z-axis, 200 units from the origin. So to be visible through
the image plane, the surfaces that get inserted into * world* (initially n i l)
will have to have negative z coordinates. Figure 9.4 illustrates a ray passing
through a point on the image plane and hitting a sphere.

The function tracer takes a pathname and writes an image to the cor
responding file. Image files will be written in a simple ASCII format called
PGM. By default, images will be 100 x 100. The header in our PGM files will
consist of the tag P2, followed by integers indicating the breadth (100) and
height (100) of the image in pixels, and the highest possible value (255). The
remainder of the file will consist of 10,000 integers between 0 (black) and
255 (white), representing 100 horizontal stripes of 100 pixels.

9.8 EXAMPLE: RAY-TRACING 153

(defstruct surface color)

(defparameter *world* nil)

(defconstant eye (make-point :x 0 :y 0 :z 200))

(defun tracer (pathname feoptional (res 1))

(with-open-file (p pathname :direction :output)

(format p "P2 ~A ~A 255" (* res 100) (* res 100))

(let ((inc (/ res)))

(do ((y -50 (+ y inc)))

(« (- 50 y) inc))

(do ((x -50 (+ x inc)))

((< (- 50 x) inc))

(print (color-at x y) p))))))

(defun color-at (x y)

(multiple-value-bind (xr yr zr)

(unit-vector (- x (x eye))

(- y (y eye))

(- 0 (z eye)))

(round (* (sendray eye xr yr zr) 255))))

(defun sendray (pt xr yr zr)

(multiple-value-bind (s int) (first-hit pt xr yr zr)

(if s

(* (lambert s int xr yr zr) (surface-color s))

0)))

(defun first-hit (pt xr yr zr)

(let (surface hit dist)

(dolist (s *world*)

(let ((h (intersect s pt xr yr zr)))

(when h

(let ((d (distance h pt)))

(when (or (null dist) (< d dist))

(setf surface s hit h dist d))))))

(values surface hit)))

(defun lambert (s int xr yr zr)
(multiple-value-bind (xn yn zn) (normal s int)
(max 0 (+ (* xr xn) (* yr yn) (* zr zn)))))

Figure 9.3: Ray-tracing.

154 NUMBERS

J ^ \ — • * • * "

point of view

V c
IK

image planeM K

t x

Figure 9.4: Ray-tracing.

)

z

The resolution of the image can be adjusted by giving an explicit res . If
r e s is 2, for example, then the same image will be rendered with 200x200
pixels.

The image is a 100 x 100 square on the image plane. Each pixel represents
the amount of light that passes through the image plane at that point on the
way to the eye. To find the amount of light at each pixel, t r a c e r calls
co lo r -a t . This function finds the vector from the eye to that point, then
calls sendray to trace the course of this vector back into the simulated world;
sendray will return an intensity value between 0 and 1, which is then scaled
to an integer between 0 and 255 for display.

To determine the intensity of a ray, sendray has to find the object that
it was reflected from. To do this it calls f i r s t - h i t , which considers all the
surfaces in *world*, and returns the surface (if any) that the ray hits first.
If the ray doesn't hit anything, sendray just returns the background color,
which by convention is 0 (black). If the ray does hit something, we have to
find out the amount of light shining on the surface at the point where the ray
hits it.

Lambert's law says that the intensity of light reflected by a point on a
surface is proportional to the dot-product of the unit normal vector N at that
point (the vector of length 1 that is perpendicular to the surface there), and
the unit vector L from the point to the light source:

i = NL

If the light is shining right at the point, N and L will be coincident, and the
dot-product will be 1, the maximum value. If the surface is turned 90° to the
light at that point, then N and L will be perpendicular, and their dot-product
will be 0. If the light is behind the surface, the dot-product will be negative.

In our program, we are assuming that the light source is at the eye, so
lambert, which uses this rule to find the illumination at some point on a
surface, returns the dot-product of the normal with the ray we were tracing.

9.8 EXAMPLE: RAY-TRACING 155

In sendray this value is multiplied by the color of the surface (a dark surface
is dark even when well-illuminated) to determine the overall intensity at that
point.

For simplicity, we will have only one kind of object in our simulated
world, spheres. Figure 9.5 contains the code involving spheres. The sphere
structure includes surface, so a sphere will have a color as well as a
center and radius . Calling defsphere adds a new one to the world.

The function i n t e r s e c t considers the type of surface involved and calls
the corresponding intersect function. At the moment there is only one,
sphere - in te r sec t , but i n t e r s e c t is written so that it can easily be ex
tended to deal with other kinds of objects.

How do we find the intersection of a ray with a sphere? The ray is
represented as a point/? = {xo,y0,Zo), and a unit yector v = (xr, yn zr). Every
point on the ray can be expressed as p + nv, for some n—that is, as (*o -I- nxn

y0 + nyr, zo + nzr)- Where the ray hits the sphere, the distance from that
point to the center (JCC, yc, zc) will be equal to the sphere's radius r. So at the
intersection the following equation will hold:

r = yj{x0 + nxr- xc)
2 + (y0 + nyr - yc)

2 -f (zo + nzr - Zc)2

This yields

an2 + bn + c = 0

where

2 2 2

a = xr + yr + zr

b = 2((xo - *c)xr + (y0 - yc)yr + (zo ~ zc)zr)

c=(x0- xc)
2 + (y0 - ycf + (z0 - zcf - r1

To find the intersection we just find the roots of this quadratic equation. It
might have zero, one, or two real roots. No roots means that the ray misses
the sphere; one root means that it intersects the sphere at one point (a grazing
hit); and two roots means that it intersects the sphere at two points (in one
side and out the other). In the latter case, we want the smaller of the two
roots; n increases as the ray travels away from the eye, so the first hit is the
smaller n. Hence the call to minroot. If there is a root, s p h e r e - i n t e r s e c t
returns the point representing (XQ + nxr, y0 -f nyn zo 4- nzr).

The other two functions in Figure 9.5, normal and sphere-normal, are
analogous to i n t e r s e c t and sphe re - in t e r sec t . Finding the normal to a
sphere is easy—it's just the vector from the point to the center of the sphere.

Figure 9.6 shows how we would generate an image; r a y - t e s t defines
38 spheres (not all of which will be visible) and then generates an image

156 NUMBERS

(defstruct (sphere (:include surface))
radius center)

(defun defsphere (x y z r c)
(let ((s (make-sphere

:radius r
reenter (make-point :x x :y y :z z)
:color c)))

(push s *world*)
s))

(defun intersect (s pt xr yr zr)
(funcall (typecase s (sphere #'sphere-intersect))

s pt xr yr zr))

(defun sphere-intersect (s pt xr yr zr)
(let* ((c (sphere-center s))

(n (minroot (+ (sq xr) (sq yr) (sq zr))
(* 2 (+ (* (- (x pt) (x c)) xr)

(* (- (y pt) (y c)) yr)
(* (- (z pt) (z c)) zr)))

(+ (sq (- (x pt) (x c)))
(sq (- (y pt) (y c)))
(sq (- (z pt) (z c)))
(- (sq (sphere-radius s)))))))

(if n
(make-point :x (+ (x pt) (* n xr))

:y (+ (y pt) (* n yr))
:z (+ (z pt) (* n zr))))))

(defun normal (s pt)
(funcall (typecase s (sphere #'sphere-normal))

s pt))

(defun sphere-normal (s pt)
(let ((c (sphere-center s)))
(unit-vector (- (x c) (x pt))

(- (y c) (y pt))
(- (z c) (z pt)))))

Figure 9.5: Spheres.

9.8 EXAMPLE: RAY-TRACING 157

(defun ray-test (feoptional (res
(setf *world* nil)

(defsphere 0 -300 -1200 200 .

(defsphere -80 -150 -1200 20C
(defsphere 70 -100 -1200 200

(do ((x -2 (1+ x)))

((> x 2))
(do ((z 2 (1+ z)))

((> z 7))
(defsphere (* x 200) 300

(tracer (make-pathname :name

D)

8)
.7)
.9)

(* z -400) 40
"spheres.pgm")

Figure 9.6: Using the ray-tracer.

.75)))
res))

Figure 9.7: Ray-traced image.

file called "spheres .pgm". Figure 9.7 shows the resulting image, generated
with a res of 10.

A real ray-tracer could generate much more sophisticated images, because
it would consider more than just the contribution of a single light source to a

158 NUMBERS

point on a surface. There might be multiple light sources, each of different
intensities. They would not ordinarily be at the eye, in which case the program
would have to check to see whether the vector to a light source intersected
another surface, which would then be casting its shadow onto the first. Putting
the light source at the eye saves us from having to consider this complication,
because we can't see any of the points that are in shadow.

A real ray-tracer would also follow the ray beyond the first surface it hit,
adding in some amount of light reflected by other surfaces. It would do color,
of course, and would also be able to model surfaces that were transparent or
shiny. But the basic algorithm would remain much as shown in Figure 9.3,
and many of the refinements would just involve recursive uses of the same
ingredients.

A real ray-tracer would probably also be highly optimized. The program
given here is written for brevity, and is not even optimized as a Lisp pro
gram, let alone as a ray-tracer. Merely adding type and inline declarations
(Section 13.3) could make it more than twice as fast.

Summary

1. Common Lisp provides integers, ratios, floating-point numbers, and
complex numbers.

2. Numbers can be simplified and converted, and their components can
be extracted.

3. Predicates for comparing numbers take any number of arguments, and
compare successive pairs—except /=, which compares all pairs.

4. Common Lisp provides roughly the numerical functions you might see
on a low-end scientific calculator. The same functions generally apply
to numbers of several types.

5. Fixnums are integers small enough to fit in one word. They are quietly
but expensively converted to bignums when necessary. Common Lisp
provides for up to four types of floating-point number. The limits of
each representation are implementation-dependent constants.

6. A ray-tracer generates an image by tracing the light that makes each
pixel back into a simulated world.

Exercises

1. Define a function that takes a list of reals and returns true iff they are
in nondecreasing order.

9.8 EXERCISES 159

2. Define a function that takes an integer number of cents and returns four
values showing how to make that number out of 25-, 10-, 5- and 1-cent
pieces, using the smallest total number of coins.

3. A faraway planet is inhabited by two kinds of beings, wigglies and
wobblies. Wigglies and wobblies are equally good at singing. Every
year there is a great competition to chooses the ten best singers. Here
are the results for the past ten years:

YEAR

WIGGLIES

WOBBLIES

1
6
4

2
5
5

3
6
4

4
4
6

5
5
5

6
5
5

7
4
6

8
5
5

9
6
4

10
5
5

Write a program to simulate such a contest. Do your results suggest
that the committee is, in fact, choosing the ten best singers each year?

4. Define a function that takes 8 reals representing the endpoints of two
segments in 2-space, and returns either n i l if the segments do not
intersect, or two values representing the x- and y-coordinates of the
intersection if they do.

5. Suppose f is a function of one (real) argument, and that min and max
are nonzero reals with different signs such that f has a root (returns
zero) for one argument / such that min < i < max. Define a function
that takes four arguments, f, min, max, and epsi lon, and returns an
approximation of / accurate to within plus or minus epsi lon.

6. Horner's method is a trick for evaluating polynomials efficiently. To
frndax3*+BX2+cx+dyou evaluate x(x(ax+b)+c)+d. Define a function
that takes one or more arguments—the value of x followed by n reals
representing the coefficients of an (n - l)th-degree polynomial—and
calculates the value of the polynomial by Horner's method.

7. How many bits would you estimate your implementation uses to rep
resent fixnums?

8. How many distinct types of float does your implementation provide?

10

Macros

Lisp code is expressed as lists, which are Lisp objects. Section 2.3 claimed
that this made it possible to write programs that would write programs. This
chapter shows how to cross the line from expressions to code.

10.1 Eval

It's obvious how to generate expressions: just call l i s t . What we haven't
considered is how to make Lisp treat them as code. The missing link is the
function eval , which takes an expression, evaluates it, and returns its value:

> (eval '(+12 3))
6
> (eval '(format t "Hello"))
Hello
NIL

If this looks familiar, it should. It's eval we have been talking to all this
time. The following function implements something very like the toplevel:

(defun our-toplevel ()
(do ()

(nil)
(format t "~%> ")
(print (eval (read)))))

For this reason the toplevel is also known as a read-eval-print loop.

160

10.1 EVAL 161

Calling eval is one way to cross the line between lists and code. However,
it is not a very good way:

1. It's inefficient: eval is handed a raw list, and either has to compile it
on the spot, or evaluate it in an interpreter. Either way is much slower
than running compiled code.

2. The expression is evaluated with no lexical context. If you call eval
within a l e t , for example, the expressions passed to eval cannot refer
to variables established by the l e t .

There are much better ways (described in the next section) to take advantage
of the possibility of generating code. Indeed, one of the only places where it
is legitimate to use eval is in something like a toplevel loop.

For programmers the main value of eval is probably as a conceptual
model for Lisp. We can imagine it defined as a big cond expression:

(defun eval (expr env)

(cond ...
((eql (car expr) 'quote) (cadr expr))

(t (apply (symbol-function (car expr))

(mapcar #'(lambda (x)

(eval x env))

(cdr expr))))))

Most expressions are handled by the default clause, which says to get the
function referred to in the car, evaluate all the arguments in the cdr, and return
the result of applying the former to the latter.1

However, we can't do this for an expression like (quote x) , since the
whole point of quote is to preserve its argument from evaluation. So we
have to have a distinct clause just for quote. That's what a special operator
is, essentially: an operator that has to be implemented as a special case in
eval.

The functions coerce and compile provide a similar bridge from lists
to code. You can coerce a lambda expression into a function,

> (coerce '(lambda (x) x) ' funct ion)
#<Interpreted-Funct ion BF9D96>

and if you give n i l as the first argument to compile, it will compile a lambda
expression given as the second argument.

'To really duplicate Lisp, eval would have to take a second argument (here env) to represent
the lexical environment. This model of eval is inaccurate in that it retrieves the function
before evaluating the arguments, whereas in Common Lisp the order of these two operations is
deliberately unspecified.

162 MACROS

> (compile nil '(lambda (x) (+ x 2)))
#<Compiled-Function BF55BE>
NIL
NIL

Since coerce and compile can take lists as arguments, a program could build
new functions on the fly. However, this is a drastic measure, comparable to
calling eval, and should be viewed with the same suspicion.

The trouble with eval, coerce, and compile is not that they cross the
line between lists and code, but that they do it at run-time. Crossing the line is
expensive. Doing it at compile-time is good enough in most cases, and costs
nothing when your program runs. The next section shows how to do this.

10.2 Macros

The most common way to write programs that write programs is by defining
macros. Macros are operators that are implemented by transformation. You
define a macro by saying how a call to it should be translated. This translation,
called macro-expansion, is done automatically by the compiler. So the code
generated by your macros becomes an integral part of your program, just as
if you had typed it in yourself.

Macros are usually defined by calling defmacro. A defmacro looks
a lot like a def un, but instead of defining the value a call should produce,
it defines how a call should be translated. For example, a macro to set its
argument to n i l might be defined as follows:

(defmacro nil! (x)
(list 'setf x nil))

This defines a new operator called n i l ! , which will take one argument. A call
of the form (n i l ! a) will be translated into (se t f a n i l) before being
compiled or evaluated. So if we type (n i l ! x) into the toplevel,

> (n i l ! x)
NIL
> x
NIL

it is exactly equivalent to typing the expansion, (se t f x n i l) .
To test a function, we call it, but to test a macro, we look at its expansion.

The function macroexpand-1 takes a macro call and generates its expansion:

> (macroexpand-1 '(nil! x))
(SETF X NIL)
T

10.3 BACKQUOTE 163

A macro call can expand into another macro call. When the compiler (or the
toplevel) encounters a macro call, it simply keeps expanding it until it is no
longer one.

The secret to understanding macros is to understand how they are imple
mented. Underneath, they're just functions that transform expressions. For
example, if you pass an expression of the form (n i l ! a) to this function

(lambda (expr)
(apply #'(lambda (x) (l i s t ' s e t f x n i l))

(cdr expr)))

it will return (se t f a n i l) . When you use defmacro, you're defining
a function much like this one. All macroexpand-1 does, when it sees
an expression whose car is known to be the name of a macro, is pass the
expression to the corresponding function.

10.3 Backquote

The backquote read-macro makes it possible to build lists from templates.
Backquote is used extensively in macro definitions. While a regular quote
is a close-quote (apostrophe) on the keyboard, a backquote is an open-quote.
It's called "backquote" because it looks like a normal quote tilted backwards.

Used by itself, a backquote is equivalent to a regular quote:

> ' (a b c)
(A B C)

Like a regular quote, a backquote alone protects its argument from evaluation.
The advantage of backquote is that, within a backquoted expression, you

can use , (comma) and , @ (comma-at) to turn evaluation back on. If you
prefix a comma to something within a backquoted expression, it will be
evaluated. Thus we can use backquote and comma together to build list
templates:

> (se t f a 1 b 2)
2
> ((a i s ,a and b i s ,b)
(A IS 1 AND B IS 2)

By using backquote instead of a call to l i s t , we can write macro definitions
that look like the expansions they will produce. For example, n i l ! could be
defined as:

(defmacro n i l ! (x)
' (s e t f ,x n i l))

164 MACROS

Comma-at is like comma, but splices its argument (which should be a
list). Instead of the list itself, its elements are inserted in the template:

> (se t f 1st ' (a b c))
(A B C)
> ' (1 s t i s , 1 s t)
(LST IS (A B C))
> '(its elements are ,@lst)
(ITS ELEMENTS ARE A B C)

Comma-at is useful in macros that have rest parameters representing, for
example, a body of code. Suppose we want a while macro that will evaluate
its body so long as an initial test expression remains true:

> (let ((x 0))
(while (< x 10)
(princ x)
(incf x)))

0123456789
NIL

We can define such a macro by using a rest parameter to collect a list of
the expressions in the body, then using comma-at to splice this list into the
expansion:

(defmacro while (t e s t ferest body)
' (do ()

((not , t e s t))
,Obody))

10.4 Example: Quicksort

Figure 10.1 contains an example of a function that relies heavily on macros—a
function to sort vectors using the Quicksort algorithm.0 The algorithm works
as follows:

1. You begin by choosing some element as the pivot. Many implementa
tions choose an element in the middle of the sequence to be sorted.

2. Then you partition the vector, swapping elements until all the elements
less than the pivot are to the left of all those greater than or equal to the
pivot.

70.5 MACRO DESIGN 165

(defun quicksort (vec 1 r)
(let ((i 1)

1 (J r)
(p (svref vec (round (+ 1 r) 2))))

(while (<= i j)

(while (< (svref vec i) p) (incf i))

(while (> (svref vec j) p) (decf j))

(when (<= i j)

(rotatef (svref vec i) (svref vec j))
(incf i)

(decf j)))

(if (> (- j 1) 1) (quicksort vec 1 j))
(if (> (- r i) 1) (quicksort vec i r)))

vec)

Figure 10.1: Quicksort.

; 1
; 2

; 3

3. Finally, if either of the partitions has two or more elements, you apply
the algorithm recursively to those segments of the vector.

With each recursion the partitions get smaller, till finally the vector is com
pletely sorted.

The implementation in Figure 10.1 takes a vector and two integers that
mark the range to be sorted. The element currently in the middle of this range
is chosen as the pivot (p). Then the partition is done by working inward from
either end of the range, and swapping elements that are either too big to be
on the left side or too small to be on the right. (Giving two arguments to
ro t a t e f swaps their values.) Finally, if either partition contains multiple
elements, they are sorted by the same process.

As well as the while macro we defined in the previous section, the imple
mentation in Figure 10.1 uses the built-in when, incf, decf, and r o t a t e f
macros. Using these macros makes the code substantially shorter and clearer.

10.5 Macro Design

Writing macros is a distinct kind of programming, with its own unique aims
and problems. Being able to change what the compiler sees is almost like
being able to rewrite it. So when you start writing macros, you have to start
thinking like a language designer.

This section gives a quick overview of the problems involved, and the
techniques used to solve them. As an example, we will define a macro called

166 MACROS

ntimes, which takes a number n and evaluates its body n times:

> (ntimes 10
(princ "."))

NIL

Here is an incorrect definition of ntimes that illustrates some issues in
macro design:

(defmacro ntimes (n ferest body) ; wrong
<(do ((x 0 (+ x 1)))

((>= x ,n))
,@body))

This definition may look ok at first sight. In the case above it would work as
intended. But in fact it is broken in two ways.

One of the problems that macro designers have to think about is in
advertent variable capture. This happens when a variable used in a macro
expansion happens to have the same name as a variable existing in the context
where the expansion is inserted. The incorrect definition of ntimes creates
a variable x. So if the macro is called in a place where there is already a
variable with that name, it may not do what we expect:

> (let ((x 10))
(ntimes 5
(setf x (+ x 1)))

x)
10

If ntimes did what it was supposed to, this expression should increment x
five times, and finally return 15. But because the macro expansion happens
to use x as its iteration variable, the se t f expression increments the value
of that x, not the one that we meant to increment. Once the macro call is
expanded, the preceding expression becomes:

(l e t ((x 10))
(do ((x 0 (+ x 1)))

((>= x 5))
(se t f x (+ x 1)))

x)

The most general solution is not to use ordinary symbols anywhere they
might be captured. Instead we can use gensyms (Section 8.4). Because read
interns every symbol it sees, there is no way a gensym could be eql to any
symbol occurring in a program text. If we rewrite the definition of ntimes
to use a gensym instead of x, it will at least be safe from variable capture:

10.5 MACRO DESIGN 167

(defmacro ntimes (n &rest body) ; wrong

(let ((g (gensym)))

'(do ((,g 0 (+ ,g 1)))

((>= ,g ,n))

,<3body)))

However, this macro is still susceptible to another problem: multiple
evaluation. Because the first argument is inserted directly into the do, it will
be evaluated on each iteration. This mistake shows most clearly when the
first argument is an expression with side-effects:

> (l e t ((v 10))
(ntimes (setf v (- v 1))
(princ ".")))

NIL

Since v is initially 10 and set f returns the value of its second argument, this
should print nine periods. In fact it prints only five.

We see why if we look at the expression with the macro call expanded:

(l e t ((v 10))
(do ((# :g l 0 (+ # :g l 1)))

((>= # :g l (se t f v (- v 1))))
(princ " . ")))

On each iteration we compare the iteration variable (gensyms usually print
as symbols preceded by #:) not against 9, but against an expression that
decreases each time it is evaluated. It is as if the horizon gets closer each time
we look at it.

The way to avoid unintended multiple evaluations is to set a variable to
the value of the expression in question before any iteration. This usually
involves another gensym:

(defmacro ntimes (n &rest body)

(let ((g (gensym))

(h (gensym)))

'(let ((,h ,n))

(do ((,g 0 (+ ,g 1)))
((>= ,g ,h))

,®body))))

Here, finally, is a correct definition of ntimes.
Unintended variable capture and multiple evaluation are the major prob

lems that can afflict macros, but they are not the only ones. With experience it

168 MACROS

is no more difficult to avoid such errors than it is to avoid more familiar errors,
like dividing by zero. But because macros give us a new kind of power, the
kind of problems we have to worry about are also new.

Your Common Lisp implementation is a good place to learn more about
macro design. By expanding calls to the built-in macros, you can usually un
derstand how they were written. Here is the expansion most implementations
will generate for a cond expression:

> (pprint (macroexpand-1 '(cond (a b)
(c d e)
(t f))))

(IF A
B
(IF C

(PROGN D E)
F))

The function ppr in t , which prints expressions indented like code, is espe
cially useful when looking at macro expansions.

10.6 Generalized Reference

Since a macro call is expanded right into the code where it appears, any macro
call whose expansion could be the first argument to setf can itself be the
first argument to setf . For example, if we defined a synonym for car,

(defmacro can (1s t) ' (c a r , 1 s t))

then because a call to car can be the first argument to setf, so could a call
to can:

> (l e t ((x (l i s t ' a >b >c)))
(se t f (can x) 44)
x)

(44 B C)

Writing a macro that expands into a se t f is another question, and a
more difficult one than it might seem at first. It might seem that you could
implement incf, say, simply as

(defmacro incf (x feoptional (y 1)) ; wrong
' (s e t f ,x (+ ,x , y)))

But this would not work. These two expressions are not equivalent:

10J EXAMPLE: MACRO UTILITIES 169

(setf (car (push 1 1st)) (1+ (car (push 1 1st))))

(incf (car (push 1 1st)))

If 1st is initially n i l , then the second expression will set it to (2), but the
first expression would set it to (1 2).

Common Lisp provides def ine-modif y-macro as a way of writing a
restricted class of macros on setf . It takes three arguments: the name of
the macro, its additional parameters (the place is implicitly the first), and the
name of a function that yields the new value of the place. So we could define
incf as

(define-modify-macro our- incf (feoptional (y 1)) +)

and a version of push for the end of a list as

(define-modify-macro appendlf (val)

(lambda (1st va l) (append 1st (l i s t v a l))))

The latter would work as follows:

> (l e t ((1s t ' (a b c)))
(appendlf 1st Jd)
1s t)

(A B C D)
Incidentally, neither push nor pop can be defined as modify-macros, the
former because the place is not its first argument, and the latter because its
return value is not the modified object.

10.7 Example: Macro Utilities

Section 6.4 introduced the concept of a utility, a general-purpose operator
like those that make up Lisp itself. We can use macros to define utilities
that could not be written as functions. We've seen several examples already:
n i l ! , ntimes, and while all have to be written as macros, because all have
to control the way in which their arguments are evaluated. This section gives
some more examples of the kinds of utilities you can write with macros.
Figure 10.2 contains a selection that have proven their worth in practice.

The first, for, is similar in design to while (page 164). It is for loops
whose bodies are evaluated with a new variable bound to a range of values:

> (for x 1 8
(princ x))

12345678
NIL

170 MACROS

(defmacro for (var start stop ftbody body)
(let ((gstop (gensym)))

'(do ((,var ,start (1+ ,var))

(,gstop ,stop))

((> ,var ,gstop))

,<3body)))

(defmacro in (obj ferest choices)
(let ((insym (gensym)))

'(let ((,insym ,obj))

(or ,@(mapcar #'(lambda (c) '(eql ,insym ,c))
choices)))))

(defmacro random-choice (ferest exprs)
'(case (random ,(length exprs))

,@(let ((key -1))

(mapcar #>(lambda (expr)
'(,(incf key) ,expr))

exprs))))

(defmacro avg (&rest args)

'(/ (+ ,<3args) ,(length args)))

(defmacro with-gensyms (syms febody body)

'(let ,(mapcar #'(lambda (s)

'(,s (gensym)))

syms)

,©body))

(defmacro aif (test then ^optional else)
'(let ((it ,test))

(if it ,then ,else)))

Figure 10.2: Macro utilities.

This is less work to write than the equivalent do,

(do ((x 1 (1+ x)))
((> x 8))

(pr inc x))

which is very close to the actual expansion:

10.7 EXAMPLE: MACRO UTILITIES 171

(do ((x 1 (1+ x))
(# :gl 8))

((> x # : g l))
(princ x))

The macro has to introduce an additional variable to hold the value that marks
the end of the range. The 8 in the example above might have been a call, and
we would not want to evaluate it multiple times. The additional variable has
to be a gensym, in order to avoid inadvertent variable capture.

The second macro in Figure 10.2, in, returns true if its first argument is
eql to any of the other arguments. The expression that we can write as

(in (car expr) '+ ' - '*)

we would otherwise have to write as

(l e t ((op (car expr)))
(or (eql op '+)

(eql op ' -)
(eql op ' *)))

Indeed, the first expression expands into one like the second, except that the
variable op is replaced by a gensym.

The next example, random-choice, randomly chooses an argument to
evaluate. We had to choose randomly between two alternatives on page 74.
The random-choice macro implements the general solution. A call like

(random-choice (turn-left) (turn-right))

gets expanded into:

(case (random 2)
(0 (t u r n - l e f t))
(1 (t u r n - r i g h t)))

The next macro, with-gensyms is intended to be used mainly within
macro bodies. It's not unusual, especially in macros for specific applications,
to have to gensym several variables. With this macro, instead of

(l e t ((x (gensym)) (y (gensym)) (z (gensym)))
. . .)

we can write

(with-gensyms (x y z)
...)

172 MACROS

So far, none of the macros defined in Figure 10.2 could have been defined
as functions. As a rule, the only reason to write something as a macro is
because you can't write it as a function. But there are a few exceptions to this
rule. Sometimes you may want to define an operator as a macro in order to
make it do some of its work at compile-time. The macro avg, which returns
the average of its arguments,

> (avg 2 4 8)
14/3

is an example of such a macro. We could write avg as a function,

(defun avg (ferest args)
(/ (apply # '+ args) (length a rg s)))

but then it would have to find the number of arguments at run-time. As long
as we are willing to forgo applying avg, why not make this call to length
at compile-time?

The last macro in Figure 10.2 is aif, which is included as an example of
intentional variable capture. It allows us to use the variable i t to refer to the
value returned by the test argument in a conditional. That is, instead of

(l e t ((va l (ca lcula te-something)))
(i f va l

(1+ val)
0))

we can write

(aif (calculate-something)
(1+ it)
0)

Used judiciously, intentional variable capture can be a valuable technique.
Common Lisp itself uses it in several places: both next-method-p and
ca l l -next -met hod rely on variable capture, for example.

Macros like these show clearly what it means to write programs that write
your programs for you. Once you have defined for, you don't have to write
out the whole do expression. Is it worth writing a macro just to save typing?
Very much so. Saving typing is what programming languages are all about;
the purpose of a compiler is to save you from typing your program in machine
language. And macros allow you to bring to your specific applications the
same kinds of advantages that high-level languages bring to programming in
general. By the careful use of macros, you may be able to make your programs

ON LISP 173

significantly shorter than they would be otherwise, and proportionately easier
to read, write, and maintain.

If you doubt this, consider what your programs would look like if you
didn't use any of the built-in macros. All the expansions those macros
generate, you would have to generate by hand. You can use this question in
the other direction as well. As you're writing a program, ask yourself, am I
writing macroexpansions? If so, the macros that generate those expansions
are the ones you need to write.

10.8 On Lisp

Now that macros have been introduced, we see that even more of Lisp is
written in Lisp than we might have expected. Most of the Common Lisp
operators that aren't functions are macros, and they are all written in Lisp.
Only 25 of Common Lisp's built-in operators are special operators.

John Foderaro has called Lisp "a programmable programming language."0

By writing your own functions and macros, you can turn Lisp into just about
any language you want. (We'll see a graphic demonstration of this possibility
in Chapter 17.) Whatever turns out to be the right form for your program,
you can be assured that you will be able to shape Lisp to suit it.

Macros are one of the key ingredients in this flexibility. They allow you
to transform Lisp almost beyond recognition, and yet to do so in a principled,
efficient way. Within the Lisp community, macros are a topic of increasing
interest. It's clear already that one can do amazing things with them, but more
certainly remain to be discovered. By you, if you want. Lisp has always put
its evolution in the hands of the programmer. That's why it survives.

Summary

1. Calling eval is one way to make Lisp treat lists as code, but it's
inefficient and unnecessary.

2. You define a macro by saying what a call should expand into. Under
neath, macros are just functions that return expressions.

3. A macro body defined with backquote resembles the expansion it will
produce.

4. The macro designer must be aware of variable capture and multiple
evaluation. Macros can be tested by pretty-printing their expansions.

5. Multiple evaluation is a problem for most macros that expand into
setfs .

174 MACROS

6. Macros are more flexible than functions, and can be used to define
a broader range of utilities. You can even use variable capture to
advantage.

7. Lisp has survived because it puts its evolution in the hands of the
programmer. Macros are part of what makes this possible.

Exercises

1. If x is a, y is b, and z is (c d), write backquoted expressions containing
only variables that yield each of the following:

(a) ((CD) A Z)

(b) (X B C D)

(c) ((C D A) Z)

2. Define i f in terms of cond.

3. Define a macro that takes a number n followed by one or more expres
sions, and returns the value of the nth expression:

> (l e t ((n 2))
(nth-expr n (/ 1 0) (+ 1 2) (/ 1 0)))

3

4. Define ntimes (page 167) to expand into a (local) recursive function
instead of ado.

5. Define a macro n-of that takes a number n and an expression, and
returns a list of n successive values returned by the expression:

> (l e t ((i 0) (n 4))
(n-of n (incf i)))

(1 2 3 4)

6. Define a macro that takes a list of variables and a body of code, and
ensures that the variables revert to their original values after the body
of code is evaluated.

10.8 EXERCISES 175

7. What's wrong with the following definition of push?

(defmacro push (obj 1st)
{(setf ,1st (cons ,obj ,1st)))

Give an example of a call where it would not do the same thing as the
real push.

8. Define a macro that doubles its argument:

> (l e t ((x 1))
(double x)
x)

2

11

CLOS

The Common Lisp Object System, or CLOS, is a set of operators for doing
object-oriented programming. Because of their common history it is conven
tional to treat these operators as a group.0 Technically, they are in no way
distinguished from the rest of Common Lisp: def method is just as much
(and just as little) an integral part of the language as def un.

11.1 Object-Oriented Programming

Object-oriented programming means a change in the way programs are orga
nized. This change is analogous to the one that has taken place in the distri
bution of processor power. In 1970, a multi-user computer system meant one
or two big mainframes connected to a large number of dumb terminals. Now
it is more likely to mean a large number of workstations connected to one
another by a network. The processing power of the system is now distributed
among individual users instead of centralized in one big computer.

Object-oriented programming breaks up traditional programs in much the
same way. Instead of having a single program that operates on an inert mass
of data, the data itself is told how to behave, and the program is implicit in
the interactions of these new data "objects."

For example, suppose we want to write a program to find the areas of
two-dimensional shapes. One way to do this would be to write a single
function that looked at the type of its argument and behaved accordingly, as
in Figure 11.1.

176

11.1 OBJECT-ORIENTED PROGRAMMING 177

(defstruct rectangle

height width)

(defstruct circle
radius)

(defun area (x)

(cond ((rectangle-p x)

(* (rectangle-height x) (rectangle-width x)))

((circle-p x)

(* pi (expt (circle-radius x) 2)))))

> (let ((r (make-rectangle)))

(setf (rectangle-height r) 2

(rectangle-width r) 3)

(area r))

6

Figure 11.1: Area with structures and a function.

Using CLOS we might write an equivalent program as in Figure 11.2. In
the object-oriented model, our program gets broken up into several distinct
methods, each one intended for certain kinds of arguments. The two methods
in Figure 11.2 implicitly define an a rea function that works just like the one
in Figure 11.1. When we call area, Lisp looks at the type of the argument
and invokes the corresponding method.

Together with this way of breaking up functions into distinct methods,
object-oriented programming implies inheritance—both of slots and meth
ods. The empty list given as the second argument in the two def classes
in Figure 11.2 is a list of superclasses. Suppose we define a new class of
colored objects, and then a class of colored circles that has both colored and
c i r c l e as superclasses:

(defclass colored ()
(color))

(defclass co lo r ed -c i r c l e (c i r c l e colored)
0)

When we make instances of c o l o r e d - c i r c l e , we will see two kinds of
inheritance:

178 CLOS

(defc lass r ec t ang le
(height width))

(defc lass c i r c l e ()
(r ad ius))

(defmethod area ((x
(* (s l o t - v a l u e x J

(defmethod area ((x
(* p i (expt (s lo t -

0

r ec t ang l e))
he ight) (s l o t - v a l u e x

c i r c l e))
-value x ' r ad iu s) 2)))

> (l e t ((r (make-instance ' r e c t a n g l e)))
(se t f (s l o t - v a l u e r ' he igh t) 2

(s l o t - v a l u e r 'width) 3)
(area r))

6

Figure 11.2

'wid th)))

: Area with classes and methods.

1. Instances of c o l o r e d - c i r c l e will have two slots: radius , which is
inherited from the c i r c l e class, and color, which is inherited from
the colored class.

2. Because there is no a rea method defined explicitly for instances of
co lo r ed -c i r c l e , if we call area on an instance of co lo red-c i rc le ,
we will get the method defined for the c i r c l e class.

In practical terms, object-oriented programming means organizing a pro
gram in terms of methods, classes, instances, and inheritance. Why would
you want to organize programs this way? One of the claims of the object-
oriented approach is that it makes programs easier to change. If we want to
change the way objects of class ob are displayed, we just change the display
method of the ob class. If we want to make a new class of objects like obs
but different in a few respects, we can create a subclass of ob; in the subclass,
we change the properties we want, and all the rest will be inherited by default
from the ob class. And if we just want to make a single ob that behaves
differently from the rest, we can create a new child of ob and modify the
child's properties directly. If the program was written carefully to begin with,
we can make all these types of modifications without even looking at the rest
of the code.0

11.3 CLASSES AND INSTANCES 179

11.2 Classes and Instances

In Section 4.6 we went through two steps to create structures: we called
def s t r u c t to lay out the form of a structure, and a specific function like
make-point to make them. Creating instances requires two analogous steps.
First we define a class, using def c l a s s :

(defclass circle ()
(radius center))

This definition says that instances of the c i r c l e class will have two slots
(like fields in a structure), named rad ius and center respectively.

To make instances of this class, instead of calling a specific function, we
call the general make-instance with the class name as the first argument:

> (setf c (make-instance ' c i r c l e))
#<Circle #XC27496>

To set the slots in this instance, we can use se t f with s l o t -va lue :

> (setf (s lo t -va lue c ' r ad iu s) 1)
1

Like structure fields, the values of uninitialized slots are undefined.

11.3 Slot Properties

The third argument to defc lass must be a list of slot definitions. The
simplest slot definition, as in the example above, is a symbol representing its
name. In the general case, a slot definition can be a list of a name followed
by one or more properties. Properties are specified like keyword arguments,

By defining an : accessor for a slot, we implicitly define a function that
refers to the slot, making it unnecessary to call s l o t -va lue . If we update
our definition of the c i r c l e class as follows,

(defclass c i r c l e ()
((rad ius :accessor c i r c l e - r a d i u s)
(center :accessor c i r c l e - c e n t e r)))

then we will be able to refer to the slots as c i r c l e - r a d i u s and c i r c l e -
center respectively:

> (setf c (make-instance ' c i r c l e))
#<Circle #XC5C726>

180 CLOS

> (setf (circle-radius c) 1)
1
> (circle-radius c)
1

By specifying a : wr i t e r or a : reader instead of an : accessor, we could
get just the first half of this behavior," or just the second.

To specify a default value for a slot, we have to give an : i n i t f orm argu
ment. If we want to be able to initialize the slot in the call to make-instance,
we define a parameter name as an : i n i t a rg . 1 With both added, our class
definition might become:

(defc lass c i r c l e ()
((r ad ius :accessor c i r c l e - r a d i u s

: i n i t a r g : rad ius
: in i t form 1)

(center :accessor c i r c l e - c e n t e r
: i n i t a r g :center
: in i t form (cons 0 0))))

Now when we make an instance of a c i r c l e we can either pass a value for
a slot using the keyword parameter defined as the slot's : i n i t a r g , or let the
value default to that of the slot's : i n i t f orm.

> (se t f c (make-instance ' c i r c l e .-radius 3))
#<Circle #XC2DE0E>
> (circle-radius c)
3
> (c i r c l e - c e n t e r c)
(0 . 0)

Note that : i n i t a r g s take precedence over : i n i t f orms.
We can specify that some slots are to be shared—that is, their value

is the same for every instance. We do this by declaring the slot to have
• .al location : c l a s s . (The alternative is for a slot to have -.allocation
: ins tance, but since this is the default there is no need to say so explicitly.)
When we change the value of such a slot in one instance, that slot will get the
same value in every other instance. So we would want to use shared slots to
contain properties that all the instances would have in common.

For example, suppose we wanted to simulate the behavior of a flock of
tabloids. In our simulation we want to be able to represent the fact that when
one tabloid takes up a subject, they all do. We can do this by making all the
instances share a slot. If the t a b l o i d class is defined as follows,

Initarg names are usually keywords, but they don't have to be.

11.4 SUPERCLASSES 181

(defclass t ab lo id ()
((top - s to ry .-accessor t a b l o i d - s t o r y

: a l l oca t i on : c l a s s)))

then if we make two instances of tabloids, whatever becomes front-page news
to one instantly becomes front-page news to the other:

> (setf daily-blab (make-instance 'tabloid)

unsolicited-mail (make-instance 'tabloid))
#<Tabloid #XC2AB16>

> (setf (tabloid-story daily-blab) 'adultery-of-senator)

ADULTERY-OF-SENATOR

> (tabloid-story unsolicited-mail)

ADULTERY-OF-SENATOR

The : documentation property, if given, should be a string to serve as
the slot's documentation. By specifying a : type, you are promising that the
slot will only contain elements of that type. Type declarations are explained
in Section 13.3.

11.4 Superclasses

The second argument to def c l a ss is a list of superclasses. A class inherits the
union of the slots of its superclasses. So if we define the class s c r e e n - c i r c l e
to be a subclass of both c i r c l e and graphic,

(defclass graphic ()
((color :accessor graphic-color : i n i t a r g :color)
(v i s i b l e :accessor g r a p h i c - v i s i b l e : i n i t a r g : v i s i b l e

: in i t form t)))

(defclass s c r e e n - c i r c l e (c i r c l e graphic)
0)

then instances of s c r e e n - c i r c l e will have four slots, two inherited from
each superclass. A class does not have to create any new slots of its own;
s c r e e n - c i r c l e exists just to provide something instantiable that inherits
from both c i r c l e and graphic.

The accessors and initargs work for instances of s c r e e n - c i r c l e just as
they would for instances of c i r c l e or graphic:

> (graphic-color (make-instance ' s c r e e n - c i r c l e
:color ' r ed : rad ius 3))

RED

182 CLOS

We can cause every s c r e e n - c i r c l e to have some default initial color by
specifying an initform for this slot in the def c l a s s :

(defc lass s c r e e n - c i r c l e (c i r c l e graphic)
((co lor : in i t form ' p u r p l e)))

Now instances of s c r e e n - c i r c l e will be purple by default:

> (graphic-color (make-instance ' s c r e e n - c i r c l e))
PURPLE

11.5 Precedence

We've seen how classes can have multiple superclasses. When there are
methods defined for several of the classes to which an instance belongs, Lisp
needs some way to decide which one to use. The point of precedence is to
ensure that this happens in an intuitive way.

For every class there is a precedence list: an ordering of itself and its
superclasses from most specific to least specific. In the examples so far,
precedence has not been an issue, but it can become one in bigger programs.
Here's a more complex class hierarchy:

(defc lass scu lp tu re () (height width depth))

(defc lass s t a t u e (scu lp ture) (sub jec t))

(defc lass metalwork () (metal - type))

(defc lass cas t ing (metalwork) ())

(defc lass c a s t - s t a t u e (s t a t u e cas t ing) ())

Figure 11.3 contains a network representing c a s t - s t a t u e and its super
classes.

To build such a network for a class, start at the bottom with a node
representing that class. Draw links upward to nodes representing each of its
immediate superclasses, laid out from left to right as they appeared in the calls
to defc lass . Repeat the process for each of those nodes, and so on, until you
reach classes whose only immediate superclass is standard-object—that
is, classes for which the second argument to defc lass was () . Create links
from those classes up to a node representing s tandard-object , and one
from that node up to another node representing the class t . The result will be
a network that comes to a point at both top and bottom, as in Figure 11.3.

11.6 PRECEDENCE 183

0
JL

^standard-objt

i ^sculpture y

^jUT
C statue J)

> (^cast-statue

Figure 11.3:

icT^

\ V

(jnetalworkj)

jn"
Q casting ^

/ i f

Class hierarchy.

The precedence list for a class can be computed by traversing the corre
sponding network as follows:

1. Start at the bottom of the network.

2. Walk upward, always taking the leftmost unexplored branch.

3. If you are about to enter a node and you notice another path entering
the same node from the right, then instead of entering the node, retrace
your steps until you get to a node with an unexplored path leading
upward. Go back to step 2.

4. When you get to the node representing t , you're done. The order in
which you first entered each node determines its place in the precedence
list.

One of the consequences of this definition (in fact, of rule 3) is that no class
appears in the precedence list before one of its subclasses.

The arrows in Figure 11.3 show how it would be traversed. The prece
dence list determined by this graph is: c a s t - s t a t u e , s t a tue , scu lp ture ,
cast ing, metalwork, s tandard-object , t . Sometimes the word specific
is used as shorthand to refer to the position of a class in a given precedence
list. The preceding list runs from most specific to least specific.

The main point of precedence is to decide what method gets used when a
generic function is invoked. This process is described in the next section. The
other time precedence matters is when a slot with a given name is inherited
from several superclasses. The note on page 408 explains the rules that apply
when this happens.0

184 CLOS

11.6 Generic Functions

A generic function is a function made up of one or more methods. Methods
are defined with def method, which is similar in form to def un:

(defmethod combine (x y)
(l i s t x y))

Now combine has one method. If we call combine at this point, we will get
the two arguments in a list:

> (combine ' a 'b)
(A B)

So far we haven't done anything we could not have done with a normal
function. The unusual thing about a generic function is that we can continue
to add new methods for it.

First, we define some classes for the new methods to refer to:

(defc lass s tuff () ((name :accessor name : i n i t a r g :name)))
(defc lass ice-cream (s tu f f) ())
(defc lass topping (s tu f f) ())

This defines three classes: stuff, which is just something with a name, and
ice-cream and topping, which are subclasses of stuff.

Now here is a second method for combine:

(defmethod combine ((i c ice-cream) (top topping))
(format n i l ""A ice-cream with ~A topping ."

(name ic)
(name t o p)))

In this call to defmethod the parameters are specialized: each one appears
in a list with the name of a class. The specializations of a method indicate
the kinds of arguments to which it applies. The method we just defined will
only be used if the arguments to combine are instances of ice-cream and
topping respectively.

How does Lisp decide which method to use when a generic function is
called? It will use the most specific method for which the classes of the
arguments match the specializations of the parameters. Which means that if
we call combine with an instance of ice-cream and an instance of topping,
we'll get the method we just defined:

> (combine (make-instance ' ice-cream :name ' f i g)
(make-instance ' topping :name ' t r e a c l e))

"FIG ice-cream with TREACLE topp ing ."

11.6 GENERIC FUNCTIONS 185

But with any other arguments, we'll get the first method we defined:

> (combine 23 'skiddoo)
(23 SKIDDOO)

Because neither of the parameters of the first method is specialized, it will
always get last priority, yet will always get called if no other method does.
An unspecialized method acts as a safety net, like an otherwise clause in a
case expression.

Any combination of the parameters in a method can be specialized. In
this method only the first argument is:

(defmethod combine ((ic ice-cream) x)

(format nil "~A ice-cream with "A."

(name ic)

x))

If we call combine with an instance of ice-cream and an instance of
topping, we'll still get the method that's looking for both, because it's
more specific:

> (combine (make-instance ' ice-cream :name 'grape)
(make-instance ' topping :name 'marshmallow))

"GRAPE ice-cream with MARSHMALLOW topping ."

However, if the first argument is ice-cream and the second argument is
anything but topping, we'll get the method we just defined above:

> (combine (make-instance ' ice-cream :name 'clam)
' r e luc tance)

"CLAM ice-cream with RELUCTANCE."

When a generic function is called, the arguments determine a set of one
or more applicable methods. A method is applicable if the arguments in the
call come within the specializations of all its parameters.

If there are no applicable methods we get an error. If there is just one, it
is called. If there is more than one, the most specific gets called. The most
specific applicable method is determined based on the class precedence for
the arguments in the call. The arguments are examined left to right. If the first
parameter of one of the applicable methods is specialized on a more specific
class than the first parameters of the other methods, then it is the most specific
method. Ties are broken by looking at the second argument, and so on.2

2We can't go through all the arguments and still have a tie, because then we would have two
methods with exactly the same specializations. That's impossible because the definition of the
second would overwrite the first.

186 CLOS

In the preceding examples, it is easy to see what the most specific ap
plicable method would be, because all the objects have a single line of
descent. An instance of ice-cream is, in order, itself, ice-cream, stuff, a
standard-ob j ect , and a member of the class t .

Methods don't have to be specialized on classes defined by def c lass .
They can also be specialized on types (or more precisely, the classes that
mirror types). Here is a method for combine that's specialized on numbers:

(defmethod combine ((x number) (y number))

(+ x y))

Methods can even be specialized on individual objects, as determined by eql:

(defmethod combine ((x (eql 'powder)) (y (eql ' spa rk)))
'boom)

Specializations on individual objects take precedence over class specializa
tions.

Methods can have parameter lists as complex as ordinary Common Lisp
functions, but the parameter lists of all the methods that compose a generic
function must be congruent. They must have the same number of required
parameters, the same number of optional parameters (if any), and must either
all use ferest or &key, or all not use them. The following pairs of parameter
lists are all congruent,

(x) (a)

(x feoptional y) (a feoptional b)

(x y ferest z) (a b &key c)

(x y &key z) (a b &key c d)

and the following pairs are not:

(x) (a b)
(x &optional y) (a &optional b c)
(x feoptional y) (a forest b)
(x &key x y) (a)

Only required parameters can be specialized. Thus each method is
uniquely identified by its name and the specializations of its required parame
ters. If we define another method with the same qualifiers and specializations,
it overwrites the original one. So by saying

(defmethod combine ((x (eql 'powder)) (y (eql 'spark)))

'kaboom)

we redefine what combine does when its arguments are powder and spark.

11.7 AUXILIARY METHODS 187

11.7 Auxiliary Methods

Methods can be augmented by auxiliary methods, including before-, after-,
and around-methods. Before-methods allow us to say, "But first, do this."
They are called, most specific first, as a prelude to the rest of the method
call. After-methods allow us to say, "P.S. Do this too." They are called, most
specific last, as an epilogue to the method call. Between them, we run what
has till now been considered just the method, but is more precisely known
as the primary method. The value of this call is the one returned, even if
after-methods are called later.

Before- and after-methods allow us to wrap new behavior around the call
to the primary method. Around-methods provide a more drastic way of doing
the same thing. If an around-method exists, it will be called instead of the
primary method. Then, at its own discretion, the around-method may itself
invoke the primary method (via the function call-next-method, which is
provided just for this purpose).

This is called standard method combination. In standard method combi
nation, calling a generic function invokes

1. The most specific around-method, if there is one.

2. Otherwise, in order,

(a) All before-methods, from most specific to least specific.

(b) The most specific primary method.

(c) All after-methods, from least specific to most specific.

The value returned is the value of the around-method (in case 1) or the value
of the most specific primary method (in case 2).

Auxiliary methods are defined by putting a qualifying keyword after the
method name in the call to def method. If we define a primary speak method
for the speaker class as

(def c l a s s speaker 0 0)

(defmethod speak ((s speaker) s t r i n g)
(format t "~A" s t r i n g))

then calling speak with an instance of speaker just prints the second argu
ment:

> (speak (make-instance 'speaker)

"I'm hungry")

I'm hungry

NIL

188 CLOS

By defining a subclass i n t e l l e c t u a l , which wraps before- and after-
methods around the primary speak method,

(defc lass i n t e l l e c t u a l (speaker) ())

(defmethod speak :before ((i i n t e l l e c t u a l) s t r i n g)
(pr inc "Perhaps "))

(defmethod speak : a f t e r ((i i n t e l l e c t u a l) s t r i n g)
(pr inc " in some sense"))

we can create a subclass of speakers that always have the last (and the first)
word:

> (speak (make-instance 'intellectual)

"I'm hungry")
Perhaps I'm hungry in some sense
NIL

As the preceding outline of standard method combination noted, all
before- and after-methods get called. So if we define before- or after-methods
for the speaker superclass,

(defmethod speak .-before ((s speaker) s t r i n g)
(pr inc "I th ink "))

they will get called in the middle of the sandwich:

> (speak (make-instance 'intellectual)

"I'm hungry")

Perhaps I think I'm hungry in some sense

NIL

Regardless of what before- or after-methods get called, the value returned by
the generic function is the value of the most specific primary method—in this
case, the n i l returned by format.

This changes if there are around-methods. If there is an around-method
specialized for the arguments passed to the generic function, the around-
method will get called first, and the rest of the methods will only run if
the around-method decides to let them. An around- or primary method can
invoke the next method by calling call-next-method. Before doing so, it
can use next-method-p to test whether there is a next method to call.

With around-methods we can define another, more cautious, subclass of
speaker:

11.8 METHOD COMBINATION 189

(defclass courtier (speaker) ())

(defmethod speak :around ((c courtier) string)

(format t "Does the King believe that ~A? " string)
(if (eql (read) 'yes)

(if (next-method-p) (call-next-method))

(format t "Indeed, it is a preposterous idea.~°/,"))

'bow)

When the first argument to speak is an instance of the c o u r t i e r class, the
courtier's tongue is now guarded by the around-method:

> (speak (make-instance 'courtier) "kings will las t")
Does the King believe that kings will las t? yes
I think kings will las t
BOW
> (speak (make-instance 'courtier) "the world is round")
Does the King believe that the world is round? no
Indeed, i t is a preposterous idea.
BOW

Note that, unlike before- and after-methods, the value returned by the around-
method is returned as the value of the generic function.

11.8 Method Combination

In standard method combination the only primary method that gets called is
the most specific (though it can call others via call-next-method). Instead
we might like to be able to combine the results of all applicable primary
methods.

It's possible to define methods that are combined in other ways—for
example, for a generic function to return the sum of all the applicable primary
methods. Operator method combination can be understood as if it resulted
in the evaluation of a Lisp expression whose first element was some operator,
and whose arguments were calls to the applicable primary methods, in order
of specificity. If we defined the p r i c e generic function to combine values
with +, and there were no applicable around-methods, it would behave as
though it were defined:

(defun p r i ce (&rest args)
(+ (apply (most specific primary method) args)

(apply (least specific primary method) a r g s)))

190 CLOS

If there are applicable around-methods, they take precedence, just as in stan
dard method combination. Under operator method combination, an around-
method can still call the next method via call-next-method. However,
primary methods can no longer use call-next-method.

We can specify the type of method combination to be used by a generic
function with a :method-combinat ion clause in a call to def generic:

(defgeneric p r i c e (x)
(:method-combination +))

Now the p r i c e method will use + method combination; any def met hods
for p r i c e must have + as the second argument. If we define some classes
with prices,

(defc lass jacke t () ())
(defc lass t r o u s e r s () ())
(defc lass s u i t (jacket t r ouse r s) ())

(defmethod p r i c e + ((jk j a c k e t)) 350)
(defmethod p r i c e + ((t r t r o u s e r s)) 200)

then when we ask for the price of an instance of su i t , we get the sum of the
applicable p r i c e methods:

> (p r ice (make-instance ' s u i t))
550

The following symbols can be used as the second argument to def method or
in the : met hod-combination option to defgeneric:

+ and append l i s t max min nconc or progn

You can also use standard, which yields standard method combination.
Once you specify the method combination a generic function should use,

all methods for that function must use the same kind. Now it would cause
an error if we tried to use another operator (or -.before or : a f ter) as the
second argument in a def method for pr i ce. If we want to change the method
combination of p r i ce , we must remove the whole generic function by calling
fmakunbound.

11.9 Encapsulation

Object-oriented languages often provide some way of distinguishing between
the actual representation of objects and the interface they present to the world.
Hiding implementation details brings two advantages: you can change the

11.10 ENCAPSULATION 191

implementation without affecting the object's outward appearance, and you
prevent objects from being modified in potentially dangerous ways. Hidden
details are sometimes said to be encapsulated.

Although encapsulation is often associated with object-oriented program
ming, the two ideas are really separate. You can have either one without the
other. We saw an example of encapsulation on a small scale on page 108.
The functions stamp and r e s e t work by sharing a counter, but calling code
does not need to know about this counter, nor can it modify it directly.

In Common Lisp, packages are the standard way to distinguish between
public and private information. To restrict access to something, we put it in
a separate package, and only export the names that are part of the external
interface.

We can encapsulate a slot by exporting the names of the methods that can
modify it, but not the name of the slot itself. For example, we could define a
counter class and associated increment and c lea r methods as follows:

(defpackage "CTR"
(:use "COMMON-LISP")
(:export "COUNTER" "INCREMENT" "CLEAR"))

(in-package ctr)

(defclass counter () ((state :initform 0)))

(defmethod increment ((c counter))

(incf (slot-value c 'state)))

(defmethod clear ((c counter))

(setf (slot-value c 'state) 0))

Under this definition, code outside the package would be able to make in
stances of counter and call increment and c lear , but would not have
legitimate access to the name s t a t e .

If you want to do more than just distinguish between the internal and
external interface to a class, and actually make it impossible to reach the
value stored in a slot, you can do that too. Simply unintern its name after
you've defined the code that needs to refer to it:

(unintern ; s t a t e)

Then there is no way, legitimate or otherwise, to refer to the slot from any
package.0

192 CLOS

11.10 Two Models

Object-oriented programming is a confusing topic partly because there are
two models of how to do it: the message-passing model and the generic
function model. The message-passing model came first. Generic functions
are a generalization of message-passing.

In the message-passing model, methods belong to objects, and are inher
ited in the same sense that slots are. To find the area of an object, we send it
an area message,

t e l l obj a rea

and this invokes whatever area method obj has or inherits.
Sometimes we have to pass additional arguments. For example, a move

method might take an argument specifying how far to move. If we wanted to
tell obj to move 10, we might send it the following message:

tell obj move 10

If we put this another way,

(move obj 10)

the limitation of the message-passing model becomes clearer. In message-
passing, we only specialize the first parameter. There is no provision for
methods involving multiple objects—indeed, the model of objects responding
to messages makes this hard even to conceive of.

In the message-passing model, methods are of objects, while in the generic
function model, they are specialized/or objects. If we only specialize the first
parameter, they amount to exactly the same thing. But in the generic function
model, we can go further and specialize as many parameters as we need to.
This means that, functionally, the message-passing model is a subset of the
generic function model. If you have generic functions, you can simulate
message-passing by only specializing the first parameter.

Summary

1. In object-oriented programming, the function/is defined implicitly via
the/methods of the objects that have them. Objects inherit methods
from their parents.

2. Defining a class is like defining a structure, but more verbose. A shared
slot belongs to a whole class.

3. A class inherits the slots of its superclasses.

EXERCISES 193

4. The ancestors of a class are ordered into a precedence list. The prece
dence algorithm is best understood visually.

5. A generic function consists of all the methods with a given name. A
method is identified by its name and the specializations of its parame
ters. Argument precedence determines the method used when a generic
function is called.

6. Methods can be augmented by auxiliary methods. Standard method
combination means calling the around-method, if there is one; other
wise the before-, most specific primary, and after-methods.

7. In operator method combination, all the primary methods are treated
as arguments to some operator.

8. Encapsulation can be done via packages.

9. There are two models of object-oriented programming. The generic
function model is a generalization of the message-passing model.

Exercises

1. Define accessors, initforms, and initargs for the classes defined in
Figure 11.2. Rewrite the associated code so that it no longer calls
s lo t -va lue .

2. Rewrite the code in Figure 9.5 so that spheres and points are classes,
and i n t e r s e c t and normal are generic functions.

3. Suppose that a number of classes are defined as follows:

(defclass a (c d) ...)
(defclass b (d c) ...)
(defclass c () ..)
(defclass d (e f g) ...)

(defclass e () .
(defclass f (h)
(defclass g (h)
(defclass h () ,

..)

...)

...)

.0

(a) Draw the network representing the ancestors of a, and list the
classes an instance of a belongs to, from most to least specific.

(b) Do the same for b.

4. Suppose that you already have the following functions;

precedence: takes an object and returns its precedence list, a list of
classes ordered from most specific to least specific.

194 CLOS

methods: takes a generic function and returns a list of all its methods.

s p e c i a l i z a t i o n s : takes a method and returns a list of the special
izations of the parameters. Each element of the returned list will
be either a class, or a list of the form (eql x), or t (indicating
that the parameter is unspecialized).

Using these functions (and not compute-applicable-methods or
find-method), define a function most-spec-app-meth that takes a
generic function and a list of the arguments with which it has been
called, and returns the most specific applicable method, if any.

5. Without changing the behavior of the generic function area (Fig
ure 11.2) in any other respect, arrange it so that a global counter gets
incremented each time area is called.

6. Give an example of a problem that would be difficult to solve if only
the first argument to a generic function could be specialized.

12

Structure

Section 3.3 explained how Lisp's use of pointers allows us to put any value
anywhere. This statement is full of possibilities, not all of them good. For
example, an object can be an element of itself. Whether this is good or bad
depends on whether it's done on purpose or by accident.

12.1 Shared Structure

Lists can share conses in common. In the simplest case, one list might be
part of another. After

> (setf pa r t (l i s t 'b ' c))
(B C)
> (setf whole (cons ' a p a r t))
(A B C)

the first cons is part of (in fact, is the cdr of) the second. In situations like
this, we say that the two lists share structure. The underlying structure of the
two lists is represented in Figure 12.1.

The predicate t a i l p detects this situation. It takes two lists and returns
true if the first would be encountered on traversing the second:

> (t a i l p pa r t whole)
T

We could imagine it written as:

195

196 STRUCTURE

parts:

wholel =

whole2 =

nil

Figure 12.2: A shared tail.

(defun our-tailp (x y)
(or (eql x y)

(and (consp y)
(our-tailp x (cdr y)))))

As the definition suggests, every list is a tail of itself, and n i l is a tail of every
proper list.

In the more complex case, two lists can share structure without either one
being a tail of the other. This happens when they share a tail in common, as
in Figure 12.2. We can create this situation as follows:

(se t f p a r t (l i s t 'b 'c)
wholel (cons 1 p a r t)
whole2 (cons 2 p a r t))

Now wholel and whole2 share structure without either list being part of the
other.

When we have nested lists, it's important to distinguish between the lists
sharing structure, and their elements sharing structure. Top-level list structure

12.1 SHARED STRUCTURE 197

holds 1 = •

i f

i

holds2 = •

Fig ure

\ f

\

i

I ! nil

1
3

12.4: SI

nil

r

nil

f
d.

iare d su btre B.

refers to the conses that make up a list, not including any conses that make
up its elements. Figure 12.3 shows the top-level list structure of a nested list.

Whether two conses share structure depends on whether we are consid
ering them as lists or as trees. Two nested lists may share structure as trees,
without sharing structure as lists. The following code creates the situation
shown in Figure 12.4, in which two lists contain the same list as an element:

(setf element (list 'a Jb)

holdsl (list 1 element 2)

holds2 (list element 3))

Although the second element of ho lds l shares structure with (in fact, is
identical to) the first element of holds2, ho lds l and holds2 do not share
structure as lists. Two lists only share structure as lists if they share top-level
list structure, which holds l and holds2 do not.

198 STRUCTURE

X

nil

f

1 nil

1
a ~+

Figure

(copy-list)

^>*

12.5: 1

1
nil

;

<) (copy-tree x)

1 nil

1
nil

Pwo kinds o f copying.

If we want to avoid sharing structure, we can do it by copying. The
function copy- l i s t , which could be defined as

(defun our-copy-list (1st)
(if (null 1st)

nil
(cons (car 1st) (our-copy-list (cdr 1st)))))

will return a list that doesn't share top-level list structure with the original
list. The function copy-tree, which might be defined as

(defun our-copy-tree (tr)
(if (atom tr)

tr
(cons (our-copy-tree (car tr))

(our-copy-tree (cdr tr)))))

will return a list that doesn't even share tree structure with the original list.
Figure 12.5 shows the difference between calling copy - l i s t and copy-tree
on a nested list.

12.2 Modification

Why would we want to avoid sharing structure? Up to this point, the issue of
shared structure has been just an intellectual exercise. It would not have made
any difference to any program we've written so far. It is when we modify
objects that shared structure becomes an issue. If two lists share structure,
and we modify one, then we may inadvertently be modifying the other.

In the previous section, we saw how to make one list a tail of another:

(setf whole (list 'a ;b
tail (cdr whole))

c)

12.3 MODIFICATION 199

Since this will make t a i l identical with the cdr of whole, if we modify either
t a i l or the cdr of whole, we are modifying the same cons:

> (setf (second t a i l) ' e)
E
> t a i l
(B E)
> whole
(A B E)

The same thing can also happen, of course, if two lists share the same tail.
It's not always an error to modify two things at once. Sometimes it might

be what you want. But when it happens inadvertently, modifying shared
structure can cause some very subtle bugs. Lisp programmers learn to be
aware of shared structure, and to suspect it immediately in certain kinds of
errors. When a list mysteriously changes for no apparent reason, it is probably
because you changed something else that shared structure with it.

It is not the shared structure that's dangerous, but the changing. To be
on the safe side, simply avoid using se t f (or related operators like pop,
rplaca, etc.) on list structure, and you won't run into any problems. If some
application absolutely requires you to modify list structure, find out where
the lists come from to make sure that they don't share structure with anything
that shouldn't be changed. If they do, or if you can't predict where the lists
will come from, make the changes to a copy.

You have to be doubly careful when you are calling a function written
by someone else. Until you know otherwise, consider the possibility that
anything you pass to the function

1. could have destructive operations done to it, and/or

2. could be saved somewhere, so that if you later modified the object, you
would also be modifying part of something that the other code was
maintaining for its own use.1

In both cases, the solution is to pass a copy.
In Common Lisp, a function called in the course of traversing list structure

(e.g. an argument to mapcar or remove-if) is not allowed to modify the
structure being traversed. The consequences of evaluating such code are
undefined.

1 For example, in Common Lisp it's an error to modify a string being used as a symbol name,
and since the definition of i n t e rn doesn't say that it copies its argument, we must assume that
it's an error to modify any string that has been passed to i n t e rn to create a new symbol.

200 STRUCTURE

12.3 Example: Queues

Shared structure is not just something to worry about. It's also something you
can put to use. This section shows how to use shared structure to represent
queues. A queue is a repository from which objects can be retrieved, one at
a time, in the order in which they were inserted. This principle is known as
FTFO, from "first in, first out."

It's easy to represent stacks using lists, because in a stack you insert
and retrieve from the same end. Representing queues is more difficult,
because insertion and retrieval happen at different ends. To implement queues
efficiently, we need somehow to get hold of both ends of a list.

Figure 12.6 suggests a strategy we could use. It shows how we might
represent a queue of a, b, and c. A queue is a pair of a list, and the last cons
in that same list. Call these front and back. To retrieve an element from the
queue we just pop front. To add an element, we create a new cons, make it
the cdr of back, and then set back to it.

The code in Figure 12.7 implements this strategy. It's used as below:

> (setf ql (make-queue))

(NIL)

> (progn (enqueue 'a ql)

(enqueue ;b ql)

(enqueue 'c ql))
(A B C)

At this point, ql is the structure shown in Figure 12.6:

> qi
((A B C) C)

Now we can try dequeueing some elements:

12.4 DESTRUCTIVE FUNCTIONS 201

(defun make--queue () (cons nil nil))

(defun enqueue (obj q)

(if (null
(setf

(setf

(car q))

(car q))
(cdr q) (setf

(cdr (cdr q))

(cdr q) (cdr

(defun dequeue (q)

(pop (car q)))

(car q) (list obj)))
(list obj)

(cdr q))))

Figure 12.7: Implementing queues.

> (dequeue ql)

A

> (dequeue ql)

B

> (enqueue 'd ql)

(C D)

12.4 Destructive Functions

Common Lisp includes several functions that are allowed to modify list
structure. These functions are destructive for reasons of efficiency. Though
they may recycle conses passed to them as arguments, they are not meant to
be called for their side-effects.

For example, de l e t e is a destructive version of remove. While it is
allowed to trash the list passed to it as an argument, it doesn't promise to do
anything. This is what happens in most implementations:

> (se t f 1st >(a r a b i a))
(A R A B I A)
> (de le te ' a 1s t)
(R B I)
> 1st
(A R B I)

As with remove, if you want side-effects, you should use se t f with the return
value:

(setf 1st (delete 'a 1st))

202 STRUCTURE

As an example of how destructive functions recycle the lists passed
to them, consider nconc, the destructive version of append.2 This two-
argument version shows clearly how two existing lists are sewn together:

(defun nconc2 (x y)
(if (consp x)

(progn
(setf (cdr (last x)) y)
x)

y»

We go to the last cons cell in the first list, and set its cdr to point to the second
list. A proper multi-argument nconc could be defined as in Appendix B.

The function mapcan is like mapcar, but splices together the values
returned by the function (which must be lists) using nconc:

> (mapcan #;list
'(a b c)
'(1 2 3 4))

(A 1 B 2 C 3)

This function might be defined as follows:

(defun our-mapcan (fn ferest l s t s)
(apply #'nconc (apply #'inapcar fn l s t s)))

Use mapcan with caution, because it is destructive. It splices together the
returned lists with nconc, so they had better not be needed elsewhere.

This kind of function is particularly useful in problems that can be un
derstood as collecting all the nodes at one level of some tree. For example,
if ch i ld ren returns a list of someone's children, then we could define a
function to return a list of someone's grandchildren as follows:

(defun grandchildren (x)
(mapcan #'(lambda (c)

(copy-list (children c)))
(children x)))

This function calls c o p y - l i s t on the assumption that ch i ldren returns a
list that's stored somewhere, instead of making a fresh one.

A nondestructive variant of mapcan might be defined:

(defun mappend (fn &rest l s t s)
(apply #'append (apply #'mapcar fn l s t s)))

2The n originally stood for "non-consing." Several destructive functions have names begin
ning with n.

12.5 EXAMPLE: BINARY SEARCH TREES 203

(defun bst-insert! (obj bst <)
(if (null bst)

(make-node :elt obj)
(progn (bsti obj bst <)

bst)))

(defun bsti (obj bst <)

(let ((elt (node-elt bst)))

(if (eql obj elt)

bst

(if (funcall < obj elt)

(let ((1 (node-1 bst)))

(if 1

(bsti obj 1 <)
(setf (node-1 bst)

(make-node :elt obj))))
(let ((r (node-r bst)))
(if r

(bsti obj r <)
(setf (node-r bst)

(make-node :elt obj))))))))

Figure 12.8: Binary search trees: Destructive insertion.

If we used mappend, we could leave out the c o p y - l i s t in the definition of
grandchildren:

(defun grandchildren (x)

(mappend #'children (children x)))

12.5 Example: Binary Search Trees

In some situations it's more natural to use destructive operations than non
destructive ones. Section 4.7 showed how to maintain a sorted collection of
objects in a binary search tree, or BST. The functions given in Section 4.7 were
all nondestructive, but in the situations where we would actually use BSTS,
this is a needless precaution. This section shows how to define destructive
insertion and deletion functions that are more likely to be useful in practice.

Figure 12.8 shows how to define a destructive version of b s t - i n s e r t
(page 72). It takes the same arguments and has the same return value. The
only difference is that it may modify the BST given as the second argument.

204 STRUCTURE

As Section 2.12 warned, being destructive doesn't mean that a function is
meant to be called for side-effects. And indeed, if you want to build a BST
using b s t - i n s e r t ! , you have to call it the same way you would call the
original b s t - i n s e r t :

> (setf *bst* nil)
NIL
> (dolist (x ' (7 2 9 8 4 1 5 12))

(setf *bst* (bst-insert! x *bst* #'<)))
NIL

You could define an analogue of push for BSTs, but the techniques for doing
so are beyond the scope of this book. (For the curious, this macro is defined
on page 409.°)

Figure 12.9 contains a destructive b s t - d e l e t e , which is to bst-remove
(page 74) as d e l e t e is to remove. And like de le te , it's not meant to
be called for side-effects. You should call b s t - d e l e t e as you would call
bst-remove:

> (se t f *bst* (b s t - d e l e t e 2 *bst* # '<))
#<7>
> (bs t - f i nd 2 *bst* #'<)
NIL

12.6 Example: Doubly-Linked Lists

Ordinary Lisp lists are singly linked lists, meaning that the pointers go in one
direction: you can get to the next element, but not the preceding one. In a
doubly linked list, the pointers go in both directions, so you can go backward
as well as forward. This section shows how to create and manipulate doubly
linked lists.

Figure 12.10 shows how to implement doubly linked lists using structures.
Considered as a structure, a cons has two fields: the car, which points to the
data, and the cdr, which points to the next element. To represent an element
in a doubly linked list we will need a third field, to point to the preceding
element. The def s t r u c t in Figure 12.10 defines a three-part object called
a d l (for "doubly linked") that we will use to build doubly linked lists. The
da ta field of a d l corresponds to the car of a cons, and the r e s t field to
the cdr. The prev field will be like a cdr that goes in the other direction.
(Figure 12.11 shows a doubly linked list of three elements.) The empty
doubly linked list will be n i l , just like the empty list.

By this call to def s t r u c t we define functions corresponding to car, cdr
and consp for doubly linked lists: d l -da ta , d l -next , and d l -p . The print-

12.6 EXAMPLE: DOUBLY-LINKED LISTS 205

(defun bst-delete (obj bst <)
(if bst (bstd obj bst nil nil <))
bst)

(defun bstd (obj bst prev dir <)
(let ((elt (node-elt bst)))
(if (eql elt obj)

(let ((rest (percolate! bst)))
(case dir
(:1 (setf (node-1 prev) rest))
(:r (setf (node-r prev) rest))))

(if (funcall < obj elt)
(if (node-1 bst)

(bstd obj (node-1 bst) bst :1 <))
(if (node-r bst)

(bstd obj (node-r bst) bst :r <))))))

(defun percolate! (bst)
(cond ((null (node-1 bst))

(if (null (node-r bst))
nil
(rperc! bst)))

((null (node-r bst)) (lperc! bst))
(t (if (zerop (random 2))

(lperc! bst)
(rperc! bst)))))

(defun lperc! (bst)
(setf (node-elt bst) (node-elt (node-1 bst)))
(percolate! (node-1 bst)))

(defun rperc! (bst)
(setf (node-elt bst) (node-elt (node-r bst)))
(percolate! (node-r bst)))

Figure 12.9: Binary search trees: Destructive deletion.

function for dls calls d l - > l i s t , which returns an ordinary list containing
the elements of a dl .

The function d l - i n s e r t is like cons for doubly linked lists. At least,
it's like cons in that it is the basic constructor function. It's unlike cons

206 STRUCTURE

(defstruct (dl (:print-function print-dl))
prev data next)

(defun print-dl (dl stream depth)

(declare (ignore depth))

(format stream "#<DL ~A>" (dl->list dl)))

(defun dl->list (1st)

(if (dl-p 1st)

(cons (dl-data 1st) (dl->list (dl-next 1st)))

1st))

(defun dl-insert (x 1st)

(let ((elt (make-dl :data x :next 1st)))

(when (dl-p 1st)

(if (dl-prev 1st)

(setf (dl-next (dl-prev 1st)) elt

(dl-prev elt) (dl-prev 1st)))

(setf (dl-prev 1st) elt))

elt))

(defun dl-list (forest args)
(reduce #'dl-insert args

:from-end t :initial-value nil))

(defun dl-remove (1st)
(if (dl-prev 1st)

(setf (dl-next (dl-prev 1st)) (dl-next 1st)))
(if (dl-next 1st)

(setf (dl-prev (dl-next 1st)) (dl-prev 1st)))
(dl-next 1st))

Figure 12.10: Building doubly linked lists.

in that it actually modifies the doubly linked list passed to it as the second
argument. In this situation it is the most natural thing to do. You don't have
to do anything to the rest of an ordinary list to cons something onto it, but if
you want to put something on the front of a doubly linked list, you have to
make the prev field of the rest of the list point back to the new element.

To put it another way, several normal lists can share the same tail. But in
doubly linked lists the tails have to point back at the structure that precedes

72.7 EXAMPLE: DOUBLY-LINKED LISTS 207

nil nil

f t *
a b c

Figure 12.11: A doubly linked list.

them, so no two doubly linked lists can have the same tail. If d l - i n s e r t
weren't destructive, it would always have to copy its second argument.

Another interesting difference between singly and doubly linked lists is
how you hold them. You hold a singly linked list by the front; when you
set a variable to a list, it has a pointer to the first cons. But since a doubly
linked list is connected in both directions, you can hold it at any point. So
d l - i n s e r t is also unlike cons in that it can put a new element anywhere in
a doubly linked list, not just on the front.

The function d l - l i s t is the dl analogue of l i s t . You give it any number
of arguments and it returns a d l containing them:

> (d l - l i s t ' a 'b >c)
#<DL (A B C)>

It uses reduce, which, with :from-end true and an : i n i t i a l - v a l u e of
n i l , makes the preceding call equivalent to

(d l - i n s e r t ' a (d l - i n s e r t 'b (d l - i n s e r t ' c n i l)))

If you replaced # ' d l - i n s e r t in the definition of d l - l i s t with # ' cons, it
would behave like l i s t . Here is the new code in use:

> (setf d l (d l - l i s t ' a >b))
#<DL (A B)>
> (setf dl (dl-insert >c dl))
#<DL (C A B)>
> (dl-insert 'r (dl-next dl))
#<DL (R A B)>
> dl
#<DL (C R A B)>

Finally, dl-remove is for removing an element from a doubly linked list.
Like d l - i n s e r t , it makes sense for it to be destructive.

208 STRUCTURE

J

a

Figure 12.12: Circular lists.

12.7 Circular Structure

By modifying list structure it's possible to create circular lists. There are two
kinds of circular lists. The more useful kind are those whose top-level list
structure is a loop. Such lists are called cdr-circular because the loop passes
through the cdr part of a cons.

To make a cdr-circular list with one element, you set the cdr of a list to be
the list itself:

> (setf x (list 'a))
(A)
> (progn (setf (cdr x) x) nil)
NIL

At this point x is a circular list, with the structure shown in Figure 12.12.
If Lisp tried to print the list we just created, it would usually display (a a

a a a, ad infinitum. But if we set the global * p r i n t - c i r c l e * to t , objects
will be displayed in a way that can represent circular structure:

> (setf *print-circle* t)
T
> x
#1=(A . #1#)

If you need to, you can use the #n= and #n# read-macros to represent shared
structure yourself.

Cdr-circular lists could be useful—to represent buffers or pools, for ex
ample. The following function would take any non-cdr-circular, nonempty
list and convert it into a cdr-circular list with the same elements:

(defun circular (1st)
(setf (cdr (last 1st)) 1st))

12.7 CIRCULAR STRUCTURE 209

The other kind of circular lists are car-circular lists. A car-circular list is
a tree that has itself as a subtree. They are so called because the loop passes
through the car of some cons. Here we create a car-circular list whose second
element is itself:

> (l e t ((y (l i s t >a)))
(setf (car y) y)

y)
#i=(#i#)

Figure 12.12 shows the resulting structure. Though car-circular, this list is a
proper list. Cdr-circular lists are never proper lists, but car-circular lists can
be, unless they are disqualified for some other reason.

A list could be both car- and cdr-circular. The car and the cdr of this cons
will be the cons itself:

> (l e t ((c (cons 1 1)))
(setf (car c) c

(cdr c) c)
c)

#1=(#1# . #1#)

It's hard to imagine what the use of such an object would be. Indeed, the main
reason to know about circular lists may be to avoid creating them by accident,
because most functions that traverse list structure will go into an infinite loop
if they are given a list that's circular in the dimension they traverse.

Circular structure can be an issue for other kinds of objects besides lists.
For example, an array can contain itself as an element:

> (setf *print-array* t)
T
> (l e t ((a (make-array 1)))

(setf (aref a 0) a)
a)

#1=#(#1#)

Indeed, just about anything that can have elements can have itself as an
element.

It's quite common to have circularities involving structures created by
def s t r uc t . For example, a structure c representing an element in a tree
might have a parent field that contained another structure/? whose ch i ld
field in turn contained c:

210 STRUCTURE

> (progn (de f s t ruc t e l t
(parent n i l) (ch i ld n i l))

(l e t ((c (make-el t))
(p (make-el t)))

(se t f (e l t - p a r e n t c) p
(e l t - c h i l d p) c)

c))
#1=#S(ELT PARENT #S(ELT PARENT NIL CHILD #1#) CHILD NIL)

In the p r i n t - f u n c t i o n of such a structure, you would either want to bind
• p r i n t - c i r c l e * to t , or avoid printing the values of the fields through
which cycles might pass.

12.8 Constant Structure

Because constants are effectively part of the code in which they occur, it
is also important not to modify them, or you may inadvertently create self-
rewriting programs. A quoted list is a constant, so you should be careful not
to modify any cons that was ever part of a quoted list in the text of a program.
For example, if we use the following predicate to test whether something is
an arithmetic operator,

(defun arith-op (x)
(member x '(+ - * /)))

then its return value, if true, will incorporate at least part of a quoted list. If
we modify the return value,

> (nconc (a r i t h -op '*) ' (a s i t were))
(* / AS IT WERE)

then we could be modifying the list within a r i th -op , and thereby changing
what the function does:

> (a r i t h - o p ' a s)
(AS IT WERE)

It is not necessarily an error to write a function that returns constant struc
ture. But when you are considering whether it's safe to perform destructive
operations on something, you must certainly take this into account.

There are several ways to write a r i t h - o p so that it doesn't return part
of a quoted list. In the general case, you can ensure safety by replacing any
quoted list with a call to l i s t , which returns a new list each time:

SUMMARY 211

(defun arith-op (x)
(member x (list ;+ '- '* V)))

In this case, calling l i s t is an inefficient solution. You would be better off
using find instead of member:

(defnn arith-op (x)
(find x >(+ - * /)))

The problem described in this section is most likely to happen with
lists, but it could happen with complex objects of any type: arrays, strings,
structures, instances, and so on. You shouldn't modify anything that occurs
literally in the text of a program.

Even if you want to write self-modifying programs, modifying constants
is not the way to do it. The compiler can wire constants into the code, and
destructive operators can modify their arguments, but neither is guaranteed.
The way to write self-modifying programs, if that's what you want, is to use
closures (Section 6.5).

Summary

1. Two lists can share a tail. Lists can share structure as trees without
sharing top-level list structure. Shared structure can be avoided by
copying.

2. Shared structure can usually be ignored, but it must be considered if
you are going to modify lists. Modifying one list can modify other lists
that share structure with it.

3. Queues can be represented as conses in which the car points to the first
cons in a list and the cdr to the last.

4. For reasons of efficiency, destructive functions are allowed to modify
their arguments.

5. In some applications, destructive implementations are the most natural.

6. Lists can be car- or cdr-circular. Lisp can represent circular and shared
structure.

7. Constants occurring in the text of a program should not be modified.

212 STRUCTURE

Exercises

1. Draw three different trees that would print as ((A) (A) (A)). Write
an expression that generates each.

2. Assuming make-queue, enqueue, and dequeue are defined as in
Figure 12.7, draw the queue in box-notation after each step:

> (setf q (make-queue))

(NIL)

> (enqueue

(A)

> (enqueue

(A B)

> (dequeue

A

3. Define a function copy-queue that returns a copy of a queue.

4. Define a function that takes an object and a queue, and puts the object
on the front of the queue.

5. Define a function that takes an object and a queue, and (destructively)
moves the first (eql) instance of the object to the front of the queue.

6. Define a function that takes an object and a possibly cdr-circular list,
and returns true if the object is a member of the list.

7. Define a function that returns true when its argument is a cdr-circular
list.

8. Define a function that returns true when its argument is a car-circular
list.

' a q)

'b q)

q)

13

Speed

Lisp is really two languages: a language for writing fast programs and a
language for writing programs fast. In the early stages of a program you can
trade speed for convenience. Then once the structure of your program begins
to crystallize, you can refine critical portions to make them faster.

It's difficult to give general advice about optimization, because of the
variation between Common Lisp implementations. A change that made your
program faster in one implementation might make it slower in another. This is
something that comes with the territory. The more powerful the language, the
further you are from the machine, and the further you are from the machine,
the greater the chance that different implementations will take different paths
toward it. So while there are some techniques that are almost certain to make
your programs faster, the aim of this chapter will be to suggest rather than to
prescribe.

13.1 The Bottleneck Rule

Three points can be made about optimization, regardless of the implementa
tion: it should be focused on bottlenecks, it should not begin too early, and it
should begin with algorithms.

Probably the most important thing to understand about optimization is
that programs tend to have a few bottlenecks that account for a great part of
the execution time. According to Knuth, "most of the running time in non-io-
bound programs is concentrated in about 3% of the source text."0 Optimizing
these parts of the program will make it run noticeably faster; optimizing the
rest of the program will be a waste of time in comparison.

213

214 SPEED

So the crucial first step in optimizing any program is to find the bottle
necks. Many Lisp implementations come with profilers that can watch a
program as it's running and report the amount of time spent in each part. A
profiler is a valuable tool—perhaps even a necessity—in producing the most
efficient code. If your Lisp implementation provides one, use it to guide
optimization. If not, you are reduced to guessing where the bottlenecks are,
and you might be surprised how often such guesses turn out to be wrong.

A corollary of the bottleneck rule is that one should not put too much
effort into optimization early in a program's life. Knuth puts the point even
more strongly: "Premature optimization is the root of all evil (or at least most
of it) in programming."0 It's hard to see where the real bottlenecks will be
when you've just started writing a program, so there's more chance you'll
be wasting your time. Optimizations also tend to make a program harder to
change, so trying to write a program and optimize it at the same time can be
like trying to paint a picture with paint that dries too fast.

You end up with better programs if each task can be emphasized at the
appropriate time. One of the benefits of Lisp is that it lets you work at a
range of different speeds: you can write slow code fast or fast code slow. In
the early stages of a program you tend to work in the former mode, then as
optimization takes precedence you switch into the latter. As the bottleneck
rule suggests, this is a more effective use of your time. In a very low-level
language, like assembler, you are essentially optimizing every line of the
program. Most of this effort is wasted, because the bottlenecks only make
up a small part of it. A more abstract language allows you to spend a greater
proportion of your time on the bottlenecks, and so get most of the gains with
a fraction of the effort.

When you do turn to optimization, begin at the top. That is, make sure
that you're using the most efficient algorithm before you resort to low-level
coding tricks. The potential gains are greater—perhaps great enough that you
won't have to resort to coding tricks after all. This rule has to be balanced
against the preceding one, though. Sometimes decisions about algorithms
have to be made early.

13.2 Compilation

Five parameters control the way your code is compiled: speed refers to the
speed of the code produced by the compiler; compilation-speed refers
to the speed at which your program will be compiled; safe ty refers to the
amount of error-checking done in the object code; space refers to the size
and memory needs of the object code; and debug refers to the amount of
information retained for debugging.

13.2 COMPILATION 215

INTERACTIVE VS. INTERPRETED

Lisp is an interactive language, but a language does not have to be inter
preted to be interactive. Early Lisp implementations were implemented
by interpreters, and the idea arose that Lisp's unique qualities depended
on its being interpreted. This idea is mistaken: Common Lisp is the same
language compiled as it is interpreted.
At least two Common Lisp implementations do not even include inter
preters. In these implementations, expressions typed into the toplevel are
compiled before being evaluated. So it is not merely old-fashioned to call
the toplevel the "interpreter," it can be an error of fact.

The compilation parameters are not real variables. They are assigned
weights from 0 (unimportant) to 3 (most important) in declarations. If a
major bottleneck occurred in the inner loop of some function, we might add
a declaration like the following:

(defun bot t leneck (. . .)
(do (. . .)

(. . .)
(do (. . .)

(. . .)
(declare (optimize (speed 3) (safe ty 0)))
. . .)))

Generally you would not want to add such declarations until the code was
finished and tested.

To ask globally for the fastest possible code, regardless of the conse
quences, you could say:

(declaim (optimize (speed 3)
(compilation-speed 0)
(safe ty 0)
(debug 0)))

This would be a drastic step, and probably not even necessary, given the
bottleneck rule.1

One particularly important kind of optimization done by Lisp compilers
is the optimization of tail calls. Giving speed the maximum weight will
ensure tail call optimization by any compiler capable of it.

'Older implementations may not provide declaim; instead use proclaim and quote the
argument.

216 SPEED

A call is a tail call if nothing remains to be done after it returns. The
following function returns the length of a list:

(defun length/r (1st)

(if (null 1st)

0

(1+ (length/r (cdr 1st)))))

The recursive call is not a tail call, because after it returns, its value has to be
passed to 1+. However, this version is tail-recursive,

(defun length/tr (1st)

(labels ((len (1st ace)

(if (null 1st)

ace

(len (cdr 1st) (1+ ace)))))

(len 1st 0)))

or more precisely, the local function len is, because nothing more has to
happen after the recursive call returns. Instead of building its return value on
the way back up the recursion, like l eng th / r , it accumulates the return value
on the way down. Hence the additional parameter ace, which can simply be
returned at the end of the last recursive call.

A good compiler can compile a tail call into a goto, and so can compile a
tail-recursive function into a loop.0 In typical machine language code, when
control arrives for the first time at the segment of instructions representing
len, there is information on the stack saying what to do upon returning.
Because nothing remains to be done after the recursive call, this information
remains valid for the second invocation as well: what we are supposed to
do on returning from the second invocation is simply to return from the first
invocation. So after setting the parameters to their new values, we can just
jump back to the beginning of the function and act as if this were the second
invocation. There is no need to do a real function call.

Another way to have the abstraction of function calls without the cost is to
have functions compiled inline. This is valuable mainly for small functions,
where the machinery of calling the function could entail more work than the
function itself performs. For example, the following function tells whether
something is a list of a single element:

(declaim (inline single?))

(defun single? (1st)

(and (consp 1st) (null (cdr 1st))))

13.3 TYPE DECLARATIONS 217

Because this function is globally declared inline, a reference to s ing le?
within a compiled function should no longer require a real function call.2 If
we define a function that calls it,

(defun foo (x)
(single? (bar x)))

then when foo is compiled, the code for s ing le? should be compiled right
into it, just as if we had written

(defun foo (x)
(l e t ((1s t (bar x)))

(and (consp 1s t) (nu l l (cdr 1 s t)))))

in the first place.
There are two limitations on inline compilation. Recursive functions can't

be inlined. And if an inlined function is redefined, we have to recompile any
function that calls it, or the calling function will still reflect the old definition.

In some earlier dialects of Lisp, one used macros (Section 10.2) to avoid
function calls. In Common Lisp this is no longer supposed to be necessary.

Different Lisp compilers do varying amounts of optimization. If you
want to see the code your compiler produces for a function, try calling
disassemble. This function takes a function or function name and displays
its compiled form. Even if what you see is completely incomprehensible,
you can still use disassemble to determine whether declarations are being
used: compile two version of the function, one with the declaration and one
without, and see if the code displayed by disassemble differs between the
two. You can use a similar technique to see if functions are being compiled
inline. In either case, be sure to set the compilation parameters beforehand
to get the fastest code.0

13.3 Type Declarations

If you're learning Lisp as a second language, you may have been puzzled by
the omission up to this point of something that's de rigueur in most other
languages: type declarations.

In most languages, you have to declare the type of each variable, and
the variable can only hold values of that type. Such a language is said to
be strongly typed. As well as being a lot of work for the programmer, this
approach imposes restrictions on what you can do. In such a language it's
hard to write functions that work for different kinds of arguments, or to have

2For inline declarations to have an effect, you may also have to set the compilation parameters
to get fast code.

218 SPEED

data structures that contain different kinds of elements.0 The advantage of
this approach is that whenever the compiler sees an addition, for example, it
knows beforehand what kind of addition is involved. If both arguments are
integers, it can hard-wire an integer addition in the object code.

As Section 2.15 mentioned, Common Lisp uses a more flexible approach
called manifest typing.3 Values have types, not variables. Variables can hold
objects of any type.

If we left it at that, we would have to pay for this flexibility in speed.
Because it can take several different types of numbers, + would have to look
at the types of each of its arguments, and decide what kind of addition to do
at run-time.

If we just want an integer addition after all, this is an inefficient way to
get it. So Common Lisp's approach is: tell me as much as you know. If
we know ahead of time that both of the arguments in some addition will be
fixnums, then we can declare them to be such, and the compiler will hard-wire
an integer addition just as in C.

So the difference between the two approaches to typing need not entail any
difference in speed. It's just that the first approach makes type declarations
mandatory, and the second doesn't. In Common Lisp, type declarations are
completely optional. They may make a program faster, but (unless incorrect)
they will not change its behavior.

Global declarations are made with declaim, which should be followed
by one or more declaration forms. A type declaration is a list containing
the symbol type, followed by a type name and the names of one or more
variables. So to declare the type of a global variable, one could say:

(declaim (type fixnum *count*))

In ANSI Common Lisp you can omit the type and say simply:

(declaim (fixnum *count*))

Local declarations are made with declare , which takes the same argu
ments as declaim. Declarations can begin any body of code where variables
have just been created: in defun, lambda, l e t , do, and so on. To declare a
function's parameters to be fixnums, for example, we would say:

(defun poly (a b x)
(declare (fixnum a b x))
(+ (* a (expt x 2)) (* b x)))

3 There are two ways to describe Lisp's approach to typing: by where the type information is
kept, and by when it is used. Manifest typing means that the type information is attached to the
data objects, and run-time typing means that type information is used at run-time. In practice
they mean the same thing.

13.3 TYPE DECLARATIONS 219

A variable name in a type declaration refers to the variable with that name in
the context where the declaration occurs—to the variable whose value would
be altered if it were instead an assignment.

You can also declare that the value of an expression will be of a certain
type, by using the. If we know beforehand that a, b, and x will not only be
fixnums, but that they will be small enough fixnums that all the intermediate
results will be fixnums, we can say:

(defun poly (a b x)
(declare (fixnum a b x))
(the fixnum (+ (the fixnum (* a (the fixnum (expt x 2))))

(the fixnum (* b x)))))

Looks a bit awkward, doesn't it? Fortunately, there are two reasons that you
rarely have to clutter up your numeric code with thes in this way. One is
that it's easy to use macros to insert such declarations for you.° The other is
that some implementations use special tricks to make fixnum arithmetic fast
without declarations.

There are a great many types in Common Lisp—a potentially unlimited
number, considering that you can define new types yourself. However, dec
larations only matter for a few. When does it pay to make type declarations?
There are two general rules:

1. It pays to declare the types of arguments to functions that work for
arguments of several different types (but not all types). If you knew
that the arguments in a call to + would always be fixnums, or that the
first argument in a call to aref would always be a particular kind of
array, it could pay to make a type declaration.

2. It is usually only worthwhile to make declarations for types near the
bottom of the type hierarchy: declaring something to be of type f ixnum
or s imple-array might be useful, but declaring something to be of
type in teger or sequence probably would not.

Type declarations are particularly important for the contents of complex
objects, including arrays, structures, and instances. Such declarations can
improve efficiency in two ways: as well as allowing the compiler to determine
the types of arguments to functions, they make it possible to represent these
objects more efficiently in memory.

If nothing is known about the type of elements an array will contain, it has
to be represented in memory as a block of pointers. But if it is known that the
array will only contain, say, double-floats, then the array can be represented
as a block of actual double-floats. This way the array will take less space,
because we no longer need a pointer to point to each of the double-floats, and

220 SPEED

—CH

' — c::r

\
1 N

1.234d0

N
N

2.345d0 3.456d0

1.234d0 2.345d0 3.456d0

i Figure 13.1: Effect of specifying element type.

access will be faster, because we don't have to follow pointers to read and
write elements.

You can specify the kind of values that an array will contain by giving
the : element-type argument to make-array. Such an an array is called a
specialized array. Figure 13.1 shows what would happen, in most implemen
tations, as a result of evaluating the following code:

(se t f x (vector 1.234d0 2.345d0 3.456d0)
y (make-array 3 :element-type ' doub le - f loa t)
(aref y 0) 1.234d0
(aref y 1) 2.345d0
(aref y 2) 3.456d0)

Each rectangle in Figure 13.1 represents a word of memory. The two arrays
each consist of a header of unspecified length, followed by some represen
tation of the three elements. In x, each element is represented by a pointer.
All three pointers happen to point to double-floats at the moment, but we
could store objects of any type in this vector. In y, each element is an actual
double-float. This is faster and takes less space, but it means that the vector
can only hold double-floats.

Note that we use aref to refer to the elements of y. A specialized vector
is no longer a simple vector, so we can no longer use svref to refer to its
elements.

As well as specifying the element type of an array when you create it, you
should declare the dimensions and element type of an array in code that uses
it. A full vector declaration would look like:

(declare (type (vector fixnum 20) v))

This declares v to be a vector of length 20, specialized for fixnums.

133 TYPE DECLARATIONS 221

(setf a (make-array '(1000 1000)
:element-type ' s i n g l e - f l o a t
: i n i t i a l - e l e m e n t l.OsO))

(defun sum-elts (a)
(declare (type (s imple-array s i n g l e - f l o a t (1000

a))
(l e t ((sum 0.0s0))

(declare (type s i n g l e - f l o a t sum))
(dotimes (r 1000)

(dotimes (c 1000)
(incf sum (aref a r c))))

sum))

Figure 13.2: Summing an array.

1000))

The most general form of array declaration consists of the array type
followed by the element type and a list of dimensions:

(declare (type (simple-array fixnum (4 4)) ar))

This declares that ar will be a 4x4 simple array specialized for fixnums.
Figure 13.2 shows how to create a lOOOx 1000 array of single-floats, and

how to write a function to sum the elements of such an array. Arrays are
stored in row-major order and should be traversed that way when possible.

We will use t ime to compare the performance of sum-elt s with and with
out declarations. The t ime macro displays some (implementation-dependent)
measure of how long it takes to evaluate an expression. It's only meaningful
to time compiled functions. In one implementation, if we compile sum-el ts
with the compilation parameters set to get the fastest code, it returns in less
than half a second:

> (time (sum-elts a))
User Run Time =0.43 seconds

1000000.0

If we take the type declarations out of sum-el ts and recompile it, the same
computation takes more than five seconds:

> (time (sum-elts a))
User Run Time =5.17 seconds

1000000.0

222 SPEED

The importance of type declarations, especially for arrays and numbers,
cannot be overemphasized. Here, two lines of code make sum-elts twelve
times faster.

13.4 Garbage Avoidance

As Lisp allows you to delay thinking about the types of variables, it also
allows you to delay thinking about memory allocation. In the early stages of
a program it frees your imagination not to have to think about (or deal with
bugs involving) memory allocation. As a program matures, it can rely less
on dynamic allocation and so become faster.

However, consing less does not always make a program faster. In Lisp
implementations with bad garbage collectors, programs that cons a lot tend to
run slowly. Until recently, most Lisp implementations have had bad garbage
collectors, and so it has become a tradition that efficient programs should
cons as little as possible. Recent developments have turned this conventional
wisdom on its head. Some implementations now have such sophisticated
garbage collectors that it is faster to cons up new objects and throw them
away than it is to recycle them.

This section introduces some ways to make programs cons less. Whether
consing less will make your programs run faster depends on the implementa
tion. Again, the best advice is to try it and see.

There are a lot of things you can do to reduce consing. Some of them
won't affect the shape of your program at all. For example, one of the easiest
steps you can take is to use destructive functions. The following table lists
some commonly used functions and their destructive counterparts.

[SAFE

append
reverse

remove

remove-if
remove-duplicates

subst

subst-if

union
intersection
set-difference

DESTRUCTIVE

nconc

nreverse

delete

delete-if

delete-duplicates

nsubst
nsubst-if

nunion
nintersection

nset-difference .

When you know it's safe to modify a list, you can use de l e t e instead of
remove, nreverse instead of reverse , and so on.

If you want to eliminate consing entirely, you don't have to give up the
possibility of creating things on the fly. What you have to avoid is allocating

13.4 GARBAGE AVOIDANCE 223

space for them on the fly, and reclaiming it by garbage collection. The
general solution is to allocate blocks of memory beforehand, and explicitly
recycle used blocks yourself. Beforehand could mean at compile-time, or
in some initialization routine. When speed begins to matter depends on the
application.

For example, when circumstances allow us to impose a limit on the size
of a stack, we could have the stack grow and shrink along a pre-allocated
vector, instead of building it out of conses. Common Lisp has built-in support
for using vectors as stacks. If we give the optional f i l l - p o i n t e r argument
to make-array, we will get a vector that seems to be expandable. The first
argument to make-array specifies the amount of storage to be allocated for
the vector, but the f i l l - p o i n t e r , when given, specifies the initial effective
length:

> (setf *print-array* t)

T

> (setf vec (make-array 10 -.fill-pointer 2

:initial-element nil))

#(NIL NIL)

The vector we just made will seem to sequence functions as if it had only two
elements,

> (length vec)
2

but it will be able to grow until it has up to ten. Because vec has a fill pointer,
we can use the functions vector-push and vector-pop to push and pop
elements as if it were a list:

> (vector-push 'a vec)

2

> vec

#(NIL NIL A)

> (vector-pop vec)

A

> vec

#(NIL NIL)

When we called vector-push, it incremented the fill pointer and returned
its old value. As long as the fill pointer is less than the initial argument to
make-array, we can push new elements onto the vector; when it runs out
of space, vector-push will return n i l . We could push up to eight more
elements onto vec at this point.

224 SPEED

(defconstant d i e t (make-array 25000 :

(defun read-words (from)
(se t f (f i l l - p o i n t e r d i e t) 0)
(wi th-open- f i l e (in from : d i r e c t i o n

(do ((w (r e a d - l i n e in n i l :eof)
(r e a d - l i n e in n i l :eof)))

((eq l w :eof))
(vector-push w d i e t))))

f i l l - p o i n t e r 0))

: input)

(defun xform (fn seq) (map-into seq fn seq))

(defun write-words (to)
(wi th-open- f i l e (out t o : d i r e c t i o n

: i f - e x i s t s
(map n i l # '(lambda (x)

(f r e s h - l i n e out)
(pr inc x out))

(xform U n r e v e r s e

:output
.•supersede)

(so r t (xform U n r e v e r s e d i e t)
' s t r i n g <)))))

Figure }3.3: Generating a rhyming dictionary.

One disadvantage of vectors with fill pointers is that they are no longer
simple vectors. We have to use aref instead of svref to refer to elements.
This, cost has to be balanced against the potential gains.

In applications that involve very long sequences, you may want to use
map-into instead of map. Instead of a sequence type, map-into takes as its
first argument an actual sequence to hold the result. This sequence can be one
of those from which the arguments to the function are taken. So, for example,
if you want to increment each element of a vector v, you might write:

(se t f v (map-into v #'1+ v))

Figure 13.3 shows an example of an application that uses a large vector:
a program to generate a simple rhyming dictionary (or more precisely, a
dictionary of sight rhymes). The function read-words reads words from a
file containing one per line,0 and the function write-words prints them out
in reverse alphabetical order. That is, the output might begin with

a amoeba alba samba marimba...

13.4 GARBAGE AVOIDANCE 225

and end with

...megahertz gigahertz jazz buzz fuzz

By taking advantage of fill-pointers and map- into* we can write this program
in a way that's both simple and efficient.

In numeric applications, be careful of bignums. Bignum arithmetic
conses, as well as being inherently slower. But even if your program must
return bignums in the end, you may be able to make it more efficient by
arranging that intermediate results are usually fixnums.

Another way to avoid garbage collection is to encourage the compiler to
allocate objects on the stack instead of the heap. When you know that you
will only need something temporarily, you may be able to avoid allocating
space for it on the heap by declaring it to have dynamic extent.

By giving a dynamic extent declaration for a variable, you're saying that
the variable's value need not last any longer than the variable does. When
could the value last longer than the variable? Here's an example:

(defun our- reverse (1s t)
(l e t ((rev n i l))

(do l i s t (x 1s t)
(push x rev))

rev))

In our-reverse , the list passed as an argument will be accumulated in
reverse order in rev. When the function returns, the variable rev will go
away. However, the list that is its value will persist: it is sent back to the
calling function, where who knows what fate awaits it.

In contrast, consider the following implementation of adj oin:

(defun our-adjoin (obj 1st &rest args)
(i f (apply t'member obj 1st args)

1st
(cons obj 1 s t)))

In this case, we can see from the definition of the function that the list in
args is going nowhere. It need not last longer than the variable itself. This
is the kind of situation where it would make sense to make a dynamic extent
declaration. If we add such a declaration,

(defun our-adjoin (obj 1st ferest args)
(declare (dynamic-extent args))
(if (apply #'member obj 1st args)

1st
(cons obj 1st)))

226 SPEED

(defparameter *harbor* nil)

(defstruct ship
name flag tons)

(defun enter (n f d)
(push (make-ship :name n :flag f :tons d)

harbor))

(defun find-ship (n)
(find n *harbor* :key #'ship-name))

(defun leave (n)
(setf *harbor*

(delete (find-ship n) *harbor*)))

Figure 13.4: Harbor.

then the compiler is free (but not required) to allocate space for args on the
stack, where it will be automatically discarded on return from our-adjoin.

13.5 Example: Pools

In applications that involve data structures, you can avoid dynamic allocation
by pre-allocating a certain number of them in a pool. When you need a
structure, you get one from the pool, and when you're finished with one, you
send it back to the pool.0 To illustrate the use of pools, we'll write a quick
prototype of a program to keep track of the ships in a harbor, and then rewrite
it to use a pool.

Figure 13.4 contains the first version. The global *harbor* will be a list
of ships, each represented by a ship structure. The function enter is called
when a ship enters the harbor; f i nd - sh ip finds a ship with a given name (if
there is one); and leave is called when a ship leaves the harbor.

This would be a perfectly good way to write the initial version of a
program, but it will generate a lot of garbage. As this program runs it will
cons in two ways: new structures will have to be allocated as ships enter the
harbor, and new conses will have to be made as *harbor* grows.

We can eliminate both sources of consing by allocating the space at
compile-time. Figure 13.5 contains a second version of the program that
shouldn't cons at all.

13.6 EXAMPLE: POOLS 227

(defconstant pool (make-array 1000 :f

(dotimes (i 1000)

(setf (aref pool i) (make-ship)))

(defconstant harbor (make-hash-table

(defun enter (n f d)

(let ((s (if (plusp (length pool))

(vector-pop pool)

(make-ship))))
(setf (ship-name s) n

(ship-flag s) f
(ship-tons s) d

(gethash n harbor) s)))

ill-pointer t))

:size

:test

(defun find-ship (n) (gethash n harbor))

(defun leave (n)
(let ((s (gethash n harbor)))

(remhash n harbor)
(vector-push s pool)))

Figure 13.5: Harbor, version 2.

1100

#;eq))

Strictly speaking, the new version does cons, just not at run-time. In
the second version, harbor is a hash table instead of a list, so all the space
for it will be allocated at compile-time. A thousand ship structures will
also be created at compile-time, and stored in the vector pool. (If the
: f i l l - p o i n t e r argument is t , the fill pointer points to the end of the vector.)
Now when enter needs a new structure, it gets one from the pool instead of
calling make-ship. And when leave removes a ship from harbor, instead
of being thrown away, it is sent back to the pool.

What we're doing by using pools is taking over the job of memory man
agement. Whether this actually makes our program run faster depends on
how our Lisp implementation manages memory. Generally speaking, it pays
to use pools only in implementations with primitive garbage collectors, or in
real-time applications where the unpredictability of GC would be a problem.

228 SPEED

13.6 Fast Operators

The beginning of this chapter described Lisp as two different languages. In
one sense this is literally true. If you look closely at the design of Common
Lisp, you can see that some features are intended mainly for speed, and others
mainly for convenience.

For example, there are three functions you could use to retrieve the element
at a given position in a vector: e l t , aref, and svref. Such variety exists
to allow you to squeeze as much performance out of a program as possible.
So if you can use svref, do. Conversely, a part of a program where speed is
important probably should not be calling e l t , which works for both arrays
and lists.

Instead of calling e l t on a list, you can call nth, which is specifically
for lists. Yet there is only a single function, length, for finding the length
of any sequence. Why doesn't Common Lisp provide a separate version for
lists? Because if your program is finding the lengths of lists, it's already lost,
as far as speed is concerned. In this case, as in many others, the design of the
language suggests what is fast and what isn't.

Another pair of similar functions are eql and eq. The former is the
default predicate for testing identity, but the latter is faster if you know that
the arguments won't be characters or numbers. Two objects are eq when
they have the same location in memory. Numbers and characters may not be
associated with any particular memory location, so eq does not apply to them
(though in most implementations it does work for fixnums). For arguments
of any other kind, eq will return the same value as eql.

It's always fastest to compare objects using eq, because all Lisp has to
do is compare the pointers to them. So eq hash tables (as in Figure 13.5)
should offer the fastest access. In an eq hash table, gethash can just hash on
pointers, without even looking at what they point to. Access is not the only
thing to consider, however; eq and eql hash tables incur extra costs under
copying garbage collection algorithms because they have to be rehashed after
a GC. If this becomes a problem, the best solution may be to use an eql hash
table with fixnums as keys.

Calling reduce can be a more efficient alternative to apply when the
function in question has a rest parameter. For example, instead of something
like

(apply # '+ ' (1 2 3))

it can be more efficient to say:

(reduce # '+ ' (1 2 3))

Not only does it help to call the right functions, it helps to call them
the right way. Rest, optional, and keyword parameters are expensive. With

13.7 TWO-PHASE DEVELOPMENT 229

ordinary parameters, the arguments in a function call are simply left by the
caller where the callee knows to look for them. But other kinds of parameters
involve processing at run-time. Keyword parameters are the worst. For built-
in functions, good compilers take special measures to compile calls with
keyword arguments into fast code. But in your own functions it is just as well
to avoid using them in speed-critical parts of a program. It is also wise not to
push large numbers of arguments into rest parameters, if this can be avoided.

Individual compilers sometimes perform their own particular optimiza
tions. For example, some compilers can optimize case statements where the
keys are integers in a narrow range. Check your user's manual for hints about
such implementation-specific optimizations.

13.7 Two-Phase Development

In applications where speed is paramount, you may want to rewrite part of
a Lisp program in a lower-level language like C or assembler. You can
use this technique with programs written in any language—critical parts
of C programs are often rewritten in assembler—but the more abstract the
language, the greater the benefits of developing programs in two phases.

Common Lisp does not prescribe a way of integrating code written in
other languages. This is left up to the implementation, but almost all imple
mentations provide some way to do it.

It may seem wasteful to write a program in one language and then to
rewrite part of it in another. In fact, experience has shown this to be a good
way to develop software. It can be easier to aim for functionality first, and
then for speed, than to try to achieve both at the same time.

If programming were an entirely mechanical process—a matter of simply
translating specifications into code—it would be reasonable to do everything
in a single step. But programming is never like that. No matter how pre
cise the specifications, programming always involves a certain amount of
exploration—usually a lot more than anyone had anticipated.

It might seem that if the specifications were good, programming would
simply be a matter of translating them into code. This is a widespread mis
conception. Programming necessarily involves exploration, because spec
ifications are necessarily vague. If they weren't vague, they wouldn't be
specifications.

In other fields, it may be desirable for specifications to be as precise as
possible. If you're asking for a piece of metal to be cut to a certain shape,
it's probably best to say exactly what you want. But this rule does not extend
to software, because programs and specifications are made out of the same
thing: text. You can't write specifications that say exactly what you want. If
the specifications were that precise, then they would be the program.0

230 SPEED

In applications that involve a substantial amount of exploration (and again,
more do than anyone admits), it can pay to separate implementation into two
phases. And the medium you use in the first phase need not be the final one.
For example, the standard way to make bronze sculptures is to begin with
clay. You build a sculpture out of clay first, and then use that to make a mold
in which the bronze sculpture is cast.0 No clay remains in the final sculpture,
but you can see its effect in the shape of the bronze. Imagine how much more
difficult it would be to produce the same thing starting with a lump of bronze
and a chisel. For the same reasons, it can be better to write a program in Lisp,
and then rewrite it in C, than to try to write it in C from the start.

Summary

1. Optimization should not begin too early, should be focused on bottle
necks, and should begin with algorithms.

2. Five parameters control compilation. They can be set with local or
global declarations.

3. A good compiler can optimize tail calls, turning a tail-recursive function
into a loop. Inline compilation is another way to avoid function calls.

4. Type declarations are not necessary, but they can make a program more
efficient. Type declarations are especially important in numeric code,
and code that deals with arrays.

5. Consing less can make a program faster, especially in implementations
with primitive garbage collectors. Solutions include using destructive
functions, pre-allocating blocks of space, and stack allocation.

6. In some situations, it might pay to draw objects from a pre-allocated
pool.

7. Some parts of Common Lisp are designed for speed and others for
flexibility.

8. Programming necessarily involves exploration. Exploration and opti
mization should be separated—sometimes even to the extent of using
different languages for each.

Exercises

1. Test whether your compiler observes inline declarations.

13.7 EXERCISES 231

2. Rewrite the following function to be tail-recursive. How much faster
is it when compiled?

(defun foo (x)
(if (zerop x)

0
(+ 1 (foo (1- x)))))

Note: you will have to add another parameter.

3. Add declarations to the following programs. How much faster can you
make them?

(a) The date arithmetic code in Section 5.7.

(b) The ray-tracer in Section 9.8.

4. Rewrite the breadth-first search code in Section 3.15 so that it conses
as little as possible.

5. Modify the binary search tree code in Section 4.7 to use pools.

14

Advanced Topics

This chapter is optional. It describes a selection of the more esoteric features
of Common Lisp. Common Lisp is like an iceberg: a great part of its
functionality is invisible to most users, who never need it. You may never
need to define packages or read-macros of your own, but when you do, it is
helpful to have examples to work from.

14.1 Type Specifiers

lypes are not objects in Common Lisp. There is no object that corresponds to
the type in teger , for example. What we get from a function like type-of,
and give as an argument to a function like typep, is not a type, but a type
specifier.

A type specifier is the name of a type. The simplest type specifiers are
symbols like in teger . These form a hierarchy in Common Lisp. At the top
of the hierarchy is the type t—all objects are of type t . The hierarchy is not
a tree. There are two paths from n i l to the top, for example: one through
atom, and the other through l i s t and sequence.

A type is really just a set of objects. Which means that there are as many
types as there are sets of objects: an infinite number. We can denote some
of these sets with atomic type specifiers: in tege r denotes the set of all the
integers. But we can also construct compound type specifiers that refer to
any set of objects.

For example, if a and b are two type specifiers, then (or a b) denotes
the union of the type denoted by a and that denoted by b. That is, an object
is of type (or a b) if it is of type a or type b.

232

14.1 TYPE SPECIFIERS 233

If c i r c u l a r ? were a function that returned true of cdr-circular lists, then
to denote the set of proper sequences you could use:1

(or vector (and list (not (satisfies circular?))))

Some of the atomic type specifiers can also appear in compound type spec
ifiers. To denote the set of integers between 1 and 100 inclusive, we would
use:

(in teger 1 100)

Such a type specifier is said to denote a. finite type.
In a compound type-specifier, you can leave some information unspecified

by using * in place of an argument. So

(s imple-array fixnum (* *))

describes the set of two-dimensional simple arrays specialized for fixnums,
and

(simple-array fixnum *)

describes the set (a supertype of the first) of simple arrays specialized for
fixnums. Trailing asterisks can be dropped, so in the latter case we could
have said:

(s imple-array fixnum)

If no arguments are given to a compound type-specifier, you can use an atom.
So simple-array describes the set of all simple arrays.

If there is some compound type specifier that you'd like to use repeatedly,
you can define an abbreviation for it with def type. This macro is just like
def macro, but expands into a type specifier instead of an expression. By
saying

(deftype proseq ()
'(or vector (and list (not (satisfies circular?)))))

we define proseq as a new atomic type specifier:

> (typep #(1 2) 'proseq)
T

If you define a type-specifier to take arguments, the arguments are treated
as forms (that is, not evaluated), just as with def macro. So

1 Though the standard does not seem to mention this, you can assume that the type-specifiers
and and or only consider as many of their arguments as they need to, like the and and or macros.

234 ADVANCED TOPICS

(deftype multiple-of (n)
'(and integer (satisfies (lambda (x)

(zerop (mod x ,n))))))

defines (mult iple-of n) as a specifier for all multiples of n:

> (typep 12 ' (mul t ip le -o f 4))
T

Type specifiers are interpreted, and therefore slow, so you would generally
be better off defining a function to make this kind of test.

14.2 Binary Streams

Chapter 7 mentioned that there were binary streams as well as character
streams. A binary stream is a source and/or destination not of characters
but of integers. You create a binary stream by specifying a subtype of
integer—most often unsigned-byte—as the : element-type when you
open the stream.

There are only two functions for I/O on binary streams, read-byte and
wr i te -by te . So here is how you might define a function to copy a file:

(defun copy- f i l e (from to)
(wi th-open- f i l e (in from : d i r e c t i o n : input

:element-type 'unsigned-byte)
(wi th-open- f i le (out t o : d i r ec t i on :output

:element-type 'unsigned-byte)
(do ((i (read-byte in n i l -1)

(read-byte in n i l - 1)))
((minusp i))

(dec lare (fixnum i))
(wr i te -by te i o u t)))))

By specifying just unsigned-byte as the : element-type, you let the
operating system choose the length of a byte. If you specifically wanted to
read or write 7-bit integers, for example, you would use

(unsigned-byte 7)

as the : element-type instead.

14.3 READ-MACROS 235

14.3 Read-Macros

Section 7.5 introduced the concept of a macro character, a character that has
a special meaning to read. Each such character has a function associated
with it that tells read what to do when the character is encountered. You can
change the function associated with an existing macro character, or define
new read-macros of your own.

The function se t -macro-character provides one way to define read-
macros. It takes a character and a function, and thereafter when read en
counters the character, it returns the result of calling the function.

One of the oldest read-macros in Lisp is ' , the quote. We could define it
as:

(set -macro-character #V
#'(lambda (stream char)

(l i s t (quote quote) (read stream t n i l t))))

When read encounters an instance of * in a normal context, it will return the
result of calling this function on the current stream and character. (The func
tion ignores this second parameter, which will always be the quote character.)
So when read sees ' a, it will return (quote a) .

Now we see the point of the last argument to read. It says whether the
call to read occurs within a call to read. The arguments to read will be the
same in nearly all read-macros: the stream; the second argument, t , which
says that read should signal an error if the next thing it sees is the end-of-file;
the third argument, which says what to return instead of generating an error
is therefore irrelevant; and the fourth argument, t , which says that the call to
read is a recursive one.

You can (with make-dispatch-macro-character) define your own
dispatching macro characters, but since # is already defined as one, you may
as well use it. Six combinations beginning with # are explicitly reserved for
your use: #!, #?, # [, #] , #{, and #}.

You can define new dispatching macro character combinations by calling
se t -dispatch-macro-character , which is like se t -macro-charac ter
except that it takes two character arguments. This code defines #? as a
read-macro that returns a list of integers.

(se t -d ispatch-macro-character #\# #\?
#'(lambda (stream char l char2)

(l i s t 'quote
(l e t ((1s t n i l))
(dotimes (i (+ (read stream t nil t) 1))

(push i 1st))
(nreverse 1st)))))

236 ADVANCED TOPICS

Now #?rc will be read as a list of all the integers from 0 to n. For example:

> #?7
(0 1 2 3 4 5 6 7)

After simple macro characters, the most commonly defined macro char
acters are list delimiters. Another character combination reserved for the user
is #{. Here we define it as a more elaborate kind of left parenthesis:

(se t -macro-charac ter # \} (get-macro-character # \)))

(se t -d ispa tch-macro-charac ter #\# #\{
#'(lambda (stream char l char2)

(l e t ((accum n i l)
(pa i r (r e a d - d e l i m i t e d - l i s t # \} stream t)))

(do ((i (car p a i r) (+ i 1)))
((> i (cadr p a i r))

(l i s t 'quote (nreverse accum)))
(push i accum)))))

This defines an expression of the form #{x y} to read as a list of all the
integers between x and y, inclusive:

> #{2 7}
(2 3 4 5 6 7)

The function r e a d - d e l i m i t e d - l i s t is provided just for such read-macros.
Its first argument is the character to treat as the end of the list. For } to be
recognized as a delimiter, it must first be given this role, hence the preliminary
call to se t -macro-character .

If you want to use a read-macro in the file in which it is defined, the
definition should be wrapped in an eval-when expression, to ensure that it
is evaluated at compile time. Otherwise the definition will be compiled, but
not evaluated until the compiled file is loaded.

14.4 Packages

A package is a Lisp object that maps names to symbols. The current package
is always stored in the global variable *package*. When Common Lisp starts
up, the current package will be common-lisp-user, informally known as the
user package. The function package-name returns the name of a package,
and find-package returns the package with a given name:

14.4 PACKAGES 237

> (package-name *package*)
"COMMON-LISP-USER"
> (find-package "COMMON-LISP-USER")
#<Package "COMMON-LISP-USER" 4CD15E>

Usually a symbol is interned in the package that was current at the time
it was read. The function symbol-package takes a symbol and returns the
package in which it is interned.

> (symbol-package 'sym)
#<Package "COMMON-LISP-USER" 4CD15E>

Interestingly, this expression returns the value it does because the expression
had to be read before it could be evaluated, and reading the expression caused
sym to be interned. For future use, let's give sym a value:

> (se t f sym 99)
99

Now we will create and switch to a new package:

> (setf *package* (make-package 'mine
:use '(common-lisp)))

#<Package "MINE" 63390E>

At this point there should be eerie music, because we are in a different world:
sym here is not what it used to be.

MINE> sym
Error: SYM has no va lue .

Why did this happen? Because the sym we set to 99 above is a distinct symbol
from sym here in mine.2 To refer to the original sym from outside the user
package, we must prefix the package name and two colons:

MINE> common-lisp-user::sym
99

So different symbols with the same print-name can coexist in different
packages. There can be one sym in package common-lisp-user and another
sym in package mine, and they will be distinct symbols. That's the point
of packages. If you're writing your program in a separate package, you can
choose names for your functions and variables without worrying that someone

2Some implementations of Common Lisp print the package name before the toplevel prompt
whenever we are not in the user package.

238 ADVANCED TOPICS

will use the same name for something else. Even if they use the same name,
it won't be the same symbol.

Packages also provide a means of information-hiding. Programs must
refer to functions and variables by their names. If you don't make a given
name available outside your package, it becomes unlikely that code in another
package will be able to use or modify what it refers to.

It's usually bad style to use package prefixes with double colons. By doing
so you are violating the modularity that packages are supposed to provide.
If you have to use a double colon to refer to a symbol, it's because someone
didn't want you to.

Usually one should only refer to symbols that have been exported. If
we go back to the user package (in-package sets *package*) and export a
symbol interned there,

MINE> (in-package common-lisp-user)
#<Package "COMMON-LISP-USER" 4CD15E>
> (export 'bar)

T

> (setf bar 5)

5

we cause it to be visible to other packages. Now when we return to mine, we
can refer to bar with only a single colon, because it is a publicly available
name:

> (in-package mine)
#<Package "MINE" 63390E>
MINE> common-lisp-user:bar
5

By importing bar into mine, we can go one step further and make mine
actually share the symbol bar with the user package:

MINE> (import 'common-lisp-user:bar)
T
MINE> bar
5

After importing bar we can refer to it without any package qualifier at all. The
two packages now share the same symbol; there can't be a distinct mine: bar.

What if there already was one? In that case, the call to import would
have caused an error, as we see if we try to import sym:

MINE> (import 'common-lisp-user::sym)
Error : SYM i s a l ready present in MINE.

14.5 THE LOOP FACILITY 239

Before, when we tried unsuccessfully to evaluate sym in mine, we thereby
caused a symbol sym to be interned there. It had no value and therefore
generated an error, but the interning happened simply as a consequence of
typing its name. So now when we try to import sym into mine, there is
already a symbol there with the same name.

Another way to get access to symbols from another package is to use it:

MINE> (use-package ;common-lisp-user)

T

Now all symbols exported by the user package can be used without any
qualifier in mine. (If sym had been exported by the user package, this call
would also have generated an error.)

The package containing the names of built-in operators and variables is
called common-lisp. Since we gave the name of this package in the :use
argument of the make-package that created mine, all of Common Lisp's
names will be visible here:

MINE> #'cons
#<Compiled-Function CONS 462A3E>

As with compilation, operations on packages are not usually done at the
toplevel like this. More often the calls are contained in source files. Generally
it will suffice to begin a file with a def package and an in-package, as on
page 137.

The kind of modularity provided by packages is actually a bit odd.
We have modules not of objects, but of names. Every package that uses
common-lisp has access to the name cons, because common-lisp includes
a function with that name. But in consequence a variable called cons would
also be visible in every package that used common-lisp. If packages are
confusing, this is the main reason why; they're not based on objects, but on
their names.0

14.5 The Loop Facility

The loop macro was originally designed to help inexperienced Lisp users
write iterative code. Instead of writing Lisp code, you express your program
in a form meant to resemble English, and this is then translated into Lisp.
Unfortunately, loop is more like English than its designers ever intended:
you can use it in simple cases without quite understanding how it works, but
to understand it in the abstract is almost impossible.

If you are one of the many Lisp programmers who have been planning one
day to understand what loop does, there is some good news and some bad

240 ADVANCED TOPICS

news. The good news is that you are not alone: almost no one understands
it. The bad news is that you probably never will, because the ANSI standard
does not really give a formal specification of its behavior.

The only real definition of this macro is its implementation, and the only
way to understand it (so far as one can) is by examples. The chapter of the
ANSI standard dealing with loop consists largely of examples, and we will
use the same approach here to introduce the basic concepts involved.

The first thing one notices about the loop macro is that it has syntax. A
loop expression contains not subexpressions but clauses. The clauses are
not delimited by parentheses; instead, each kind has a distinct syntax. In that,
loop resembles traditional Algol-like languages. But the other distinctive
feature of loop, which makes it as unlike Algol as Lisp, is that the order in
which things happen is only loosely related to the order in which the clauses
occur.

There are three phases in the evaluation of a loop expression, and a given
clause can contribute code to more than one phase. The phases are as follows:

1. Prologue. Evaluated once as a prelude to iteration. Includes setting
variables to their initial values.

2. Body. Evaluated on each iteration. Begins with the termination tests,
followed by the body proper, then the updating of iteration variables.

3. Epilogue. Evaluated once iteration is completed. Concludes with the
return of the value(s) of the loop expression.

We will look at some examples of loop clauses and consider what kind of
code they might contribute to each phase.

For example, in the simplest kind of loop expression we might see
something like the following:

> (loop for x from 0 to 9
do (princ x))

0123456789
NIL

This loop expression prints the integers from 0 to 9 and returns n i l . The
first clause,

for x from 0 t o 9

contributes code to the first two phases, causing x to be set to 0 in the prologue,
compared to 9 at the beginning of the body, and incremented at the end. The
second clause,

14.5 THE LOOP FACILITY 241

do (princ x)

contributes code (the pr inc expression) to the body proper.
A more general kind of for clause specifies an initial and update form.

Termination can then be controlled by something like a while or u n t i l
clause.

> (loop for x = 8 then (/ x 2)
u n t i l (< x 1)
do (pr inc x))

8421
NIL

You can use and to create a compound for clause in which two variables
will be initialized and updated in parallel:

> (loop for x from 1 to 4
and y from 1 to 4
do (pr inc (l i s t x y)))

(1 1)(2 2) (3 3)(4 4)
NIL

Otherwise, if there are multiple for clauses, the variables will be updated
sequentially.

Another thing one typically wants to do in iterative code is accumulate
some kind of value. For example:

> (loop for x in ' (1 2 3 4)
co l l e c t (1+ x))

(2 3 4 5)

Using in instead of from in the for clauses causes the variable to be set to
successive elements of a list instead of successive integers.

In this case the co l l e c t clause contributes code to all three phases. In
the prologue an anonymous accumulator is set to n i l ; in the body (1+ x) is
appended to this accumulator; and in the epilogue its value is returned.

This is the first example to return a particular value. There are clauses
for explicitly specifying the return value, but in the absence of such clauses,
a co l l ec t clause determines the return value. So what we've done here is
duplicate map car.

The most common use of loop is probably to collect the results of calling
a function a certain number of times:

> (loop for x from 1 to 5
collect (random 10))

(3 8 6 5 0)

242 ADVANCED TOPICS

(defun most (fn 1st)
(if (null 1st)

(values nil nil)
(let* ((wins (car 1st))

(max (funcall fn wins)))
(dolist (obj (cdr 1st))
(let ((score (funcall fn obj)))
(when (> score max)
(setf wins obj

max score))))
(values wins max))))

(defun num-year (n)
(if (< n 0)

(do* ((y (- yzero 1) (- y 1))
(d (- (year-days y)) (- d (year-days y))))
((<= d n) (values y (- n d))))

(do* ((y yzero (+ y 1))
(prev 0 d)
(d (year-days y) (+ d (year-days y))))
((> d n) (values y (- n prev))))))

Figure 14.1: Iteration without loop.

Here we get a list of five random numbers. It was for cases like this that we
defined map-int (page 105). Why do we need map-int if we have loop?
One can as easily ask, why do we need loop if we have map-int?0

A c o l l e c t clause can also accumulate its value into a named variable.
The following function takes a list of numbers and returns lists of the even
and odd elements:

(defun even/odd (ns)
(loop for n in ns

if (evenp n)
collect n into evens
else collect n into odds

finally (return (values evens odds))))

A f i n a l l y clause contributes code to the epilogue. In this case it specifies
the return value.

A sum clause is like a c o l l e c t clause, but accumulates a number instead
of a list. To get the sum of the numbers from 1 to n we could write:

14.5 THE LOOP FACILITY 243

(defun most (fn 1st)
(if (null 1st)

(values nil nil)
(loop with wins = (car 1st)

with max = (funcall fn wins)
for obj in (cdr 1st)
for score = (funcall fn obj)
when (> score max)

do (setf wins obj
max score)

finally (return (values wins

(defun num-year (n)
(if (< n 0)

(loop for y downfrom (- yzero 1)
until (<= d n)
sum (- (year-days y)) into d
finally (return (values (+ y

(loop with prev = 0
for y from yzero
until (> d n)
do (setf prev d)
sum (year-days y) into d
finally (return (values (- y

(- n

Figure 14.2: Iteration with loop.

max)))))

1) (- n d))))

1)
prev))))))

(defun sum (n)
(loop for x from 1 to n

sum x))

Further details of loop are covered in Appendix D, beginning on page 325.
As an example, Figure 14.1 contains two iterative functions from preceding
chapters, and Figure 14.2 shows the same functions rendered into loops.

One loop clause can refer to variables established by another. In the defi
nition of even/odd, for example, the f i n a l l y clause refers to the variables
established by the two c o l l e c t clauses. The relations between such vari
ables are one of the greatest ambiguities in the definition of loop. Consider
the following two expressions:

244 ADVANCED TOPICS

(loop for y = 0 then z

for x from 1 to 5

sum 1 into z

finally (return (values y z)))

(loop for x from 1 to 5

for y = 0 then z

sum 1 into z

finally (return (values y z)))

They seem simple enough—they each have only four clauses. Do they return
the same values? What values do they return? You will search the standard
in vain for the answers. Each loop clause is simple enough by itself. But
the way they combine is extremely complicated—and ultimately, not even
well-defined.

For such reasons, the use of loop cannot be recommended. The most
that can be said for it, in typical examples like those shown in Figure 14.2, is
that it makes the code look easier to understand.

14.6 Conditions

In Common Lisp, conditions include errors and other situations that can arise
at run-time. When a condition is signalled, the corresponding handler is
invoked. The default handler for error conditions usually invokes a break-
loop. But Common Lisp provides a variety of operators for signalling and
handling conditions. It's possible to override the default handlers, or even
write new handlers of your own.

Most programmers will not deal with conditions directly. However, there
are several layers of more abstract operators that use conditions, and to
understand these operators it helps to know about the underlying mechanism.

Common Lisp has several operators for signalling errors. The most basic
is e r ro r . One way to call it is to give it the same arguments that you might
pass to format:

> (error "Your report uses ~A as a verb." }status)
Error: Your report uses STATUS as a verb.

Options: :abort, :backtrace
»

Unless such a condition is handled, execution will be interrupted, as above.
More abstract operators for signalling errors include ecase, check-type

and a s s e r t . The former is like case, but signals an error if none of the keys
match:

14.6 CONDITIONS 245

> (ecase 1 (2 3) (4 5))

Error: No applicable clause.

Options: :abort, :backtrace
»

The regular case will return n i l if no key matches, but since it's bad style to
take advantage of this return value, you might as well use ecase whenever
you don't have an otherwise clause.

The check-type macro takes a place, a type name, and an optional string,
and signals a correctable error if the value of the place is not of the designated
type. The handler for a correctable error will give us the option of providing
a new value:

> (let ((x '(a b c)))

(check-type (car x) integer "an integer")

x)

Error: The value of (CAR X), A, should be an integer.

Options: :abort, :backtrace, :continue

>> .-continue
New value of (CAR X)? 99
(99 B C)
>

In this example, (car x) was set to the new value that we supplied, and
execution resumed, returning what it would have returned if (car x) had
originally contained the value we supplied.

This macro is defined in terms of the more general a s s e r t , which takes
a test expression and a list of one or more places, followed by the arguments
you might give to er ror :

> (let ((sandwich '(ham on rye)))

(assert (eql (car sandwich) 'chicken)

((car sandwich))

"I wanted a ~A sandwich." 'chicken)
sandwich)

Error: I wanted a CHICKEN sandwich.

Options: :abort, :backtrace, :continue

» :continue
New value of (CAR SANDWICH)? 'chicken
(CHICKEN ON RYE)
>

It's also possible to establish new handlers, but most programmers will
only take advantage of this possibility indirectly, by using macros like

246 ADVANCED TOPICS

i gnore -e r ro r s . This macro behaves like progn if none of its arguments
cause an error. But if an error is signalled during the evaluation of one of its
arguments, execution will not be interrupted. Instead the ignore -e r ro rs
expression will immediately return two values: n i l and the condition that
was signalled.

For example, if at some point you want the user to be able to enter an
expression, but you don't want an error to interrupt execution if the input is
syntactically ill-formed, you could write:

(defun user-input (prompt)

(format t prompt)

(let ((str (read-line)))

(or (ignore-errors (read-from-string str))
nil)))

This function just returns n i l if the input contains syntax errors:

> (user-input "Please type an expression> ")

Please type an expression> #°/»@#+! !

NIL

15

Example: Inference

The next three chapters offer examples of substantial Lisp programs. These
examples were chosen to illustrate the form that longer programs take, and
also the kinds of problems for which Lisp is especially well-suited.

In this chapter we will write a program that makes inferences based on a
collection of if-then rules. This is a classic example—not only in the sense
that it often appears in textbooks, but also because it reflects the original idea
of Lisp as a language for "symbolic computation." A lot of the earliest Lisp
programs had the flavor of the example in this chapter.

15.1 The Aim

In this program, we're going to represent information in a familiar form: a list
consisting of a predicate followed by zero or more arguments. To represent
the fact that Donald is the parent of Nancy, we might say:

(parent donald nancy)

As well as facts, our program is going to represent rules that tell what can be
inferred from the facts we already have. We will represent such rules as

(<- head body)

where head is the then-part and body is the if-part. Within the head and body
we will represent variables as symbols beginning with question marks. So
this rule

(<- (chi ld ?x ?y) (parent ?y ?x))

247

248 EXAMPLE: INFERENCE

says that if y is the parent of x, then x is the child of y; or more precisely, that
we can prove any fact of the form (ch i ld x v) by proving (parent y x).

It will be possible for the body (if-part) of a rule to be a complex expres
sion, containing the logical operators and, or, and not. So if we want to
represent the rule that if JC is the parent of v, and x is male, then x is the father
of v, we would write:

(<- (father ?x ?y) (and (parent ?x ?y) (male ?x)))

Rules may depend on facts implied by other rules. For example, the first
rule we wrote was for proving facts of the form (chi ld x y). If we defined
a rule

(<- (daughter ?x ?y) (and (ch i ld ?x ?y) (female ?x)))

then using it to prove (daughter x y) might cause the program to use the
first rule to prove (ch i ld x y).

The proof of an expression can continue back through any number of
rules, so long as it eventually ends up on the solid ground of known facts.
This process is sometimes called backward chaining. The backward comes
from the fact that this kind of inference first considers the then-part, to see
if the rule will be useful, before going on to prove the if-part. The chaining
comes from the way that rules can depend on other rules, forming a chain
(though in fact it's more like a tree) that leads from what we want to prove
back to what we already know.0

15.2 Matching

In order to write our backward-chaining program, we are going to need
a function to do pattern-matching: a function that can compare two lists,
possibly containing variables, to see if there is some way of assigning values
to the variables which makes the two equal. For example, if ?x and ?y are
variables, then the two lists

(p ?x ?y c ?x)
(p a b c a)

match when ?x = a and ?y = b, and the lists

(p ?x b ?y a)
(p ?y b c a)

match when ?x = ?y = c.
Figure 15.1 contains a function called match. It takes two trees, and if

they can be made to match, it returns an assoc-list showing how:

15.2 MATCHING 249

(defun match (x y feoptional binds)

(cond

((eql x y) (values binds t))

((assoc x binds) (match (binding x binds) y binds))

((assoc y binds) (match x (binding y binds) binds))

((var? x) (values (cons (cons x y) binds) t))

((var? y) (values (cons (cons y x) binds) t))

(t

(when (and (consp x) (consp y))

(multiple-value-bind (b2 yes)

(match (car x) (car y) binds)
(and yes (match (cdr x) (cdr y) b2)))))))

(defun var? (x)

(and (symbolp x)

(eql (char (symbol-name x) 0) #\?)))

(defun binding (x binds)
(let ((b (assoc x binds)))
(if b

(or (binding (cdr b) binds)
(cdr b)))))

Figure 15.1: Matching function.

> (match >(p a b c a) ' (p ?x ?y c ?x))
((?Y . B) (?X . A))
T
> (match ' (p ?x b ?y a) ' (p ?y b c a))
((?Y . C) (?X . ?Y))
T
> (match ' (a b c) ' (a a a))
NIL

As match compares its arguments element by element, it builds up assign
ments of values to variables, called bindings, in the parameter binds. If
the match is successful, match returns the bindings generated; otherwise, it
returns n i l . Since not all successful matches generate any bindings, match,
like gethash, returns a second value to show that the match succeeded:

250 EXAMPLE: INFERENCE

> (match ' (p ?x) »(p ?x))
NIL
T

When match returns n i l and t as above, it indicates a successful match that
yielded no bindings. In English, the match algorithm works as follows:

1. If x and y are eql they match; otherwise,

2. If x is a variable that has a binding, they match if it matches y; otherwise,

3. If y is a variable that has a binding, they match if it matches x; otherwise,

4. If x is a variable (without a binding), they match and thereby establish
a binding for it; otherwise,

5. If y is a variable (without a binding), they match and thereby establish
a binding for it; otherwise,

6. They match if they are both conses, and the cars match, and the cdrs
match with the bindings generated thereby.

Here is an example illustrating, in order, each of the six cases:

> (match ' (p ?v b ?x d (?z ?z))
' (p a ?w c ?y (e e))
>((?v . a) (?w . b)))

((?Z . E) (?Y . D) (?X . C) (?V . A) (?W . B))
T

To find the value (if there is one) associated with a variable in a list of
bindings, match calls binding. This function has to be recursive, because
matching can build up binding lists in which a variable is only indirectly
associated with its value: ?x might be bound to a in virtue of the list containing
both (?x . ?y) and (?y . a) .

> (match ; (? x a) ' (?y ?y))
((?Y . A) (?X . ?Y))
T

By matching ?x with ?y and then ?y with a, we establish indirectly that ?x
must be a.

15.3 ANSWERING QUERIES 251

(defvar *rules* (make-hash-table))

(defmacro <- (con ̂ optional ant)
f (length (push (cons (cdr ',con) ',ant)

(gethash (car ',con) *rules*))))

Figure 15.2: Defining rules.

15.3 Answering Queries

Now that the concept of bindings has been introduced, we can say more
precisely what our program will do: it will take an expression, possibly
containing variables, and return all the bindings that make it true given the
facts and rules that we have. For example, if we have just the fact

(parent donald nancy)

and we ask the program to prove

(parent ?x ?y)

it should return something like

(((?x . donald) (?y . nancy)))

which says that there is exactly one way for the expression to be true: if ?x
is donald and ?y is nancy.

Now that we have a matching function we are already a good part of
the way to our destination. Figure 15.2 contains the code for defining rules.
The rules are going to be contained in a hash table called *rules*, hashed
according to the predicate in the head. This imposes the restriction that
we can't use variables in the predicate position. We could eliminate this
restriction by keeping all such rules in a separate list, but then to prove
something we would have to match it against every one.

We will use the same macro, <-, to define both facts and rules. A fact
will be represented as a rule with a head but no body. This is consistent with
our definition of rules. A rule says that you can prove the head by proving
the body, so a rule with no body means that you don't have to prove anything
to prove the head. Here are two familiar examples:

> (<- (parent donald nancy))
1
> (<- (child ?x ?y) (parent ?y ?x))
1

252 EXAMPLE: INFERENCE

(defun prove (expr feoptional binds)
(case (car expr)

(and (prove-and (reverse (cdr expr)) binds))
(or (prove-or (cdr expr) binds))
(not (prove-not (cadr expr) binds))

(t (prove-simple (car expr) (cdr expr) binds))))

(defun prove-simple (pred args binds)
(mapcan #'(lambda (r)

(multiple-value-bind (b2 yes)

(match args (car r)
binds)

(when yes
(if (cdr r)

(prove (cdr r) b2)
(list b2)))))

(mapcar #'change-vars

(gethash pred *rules*))))

(defun change-vars (r)

(sublis (mapcar #'(lambda (v) (cons v (gensym "?")))

(vars-in r))

r))

(defun vars-in (expr)
(if (atom expr)

(if (var? expr) (list expr))
(union (vars-in (car expr))

(vars-in (cdr expr)))))

Figure 15.3: Inference.

Calls to <- return the number of rules now stored under a given predicate;
wrapping the push in a call to length saves us from seeing a big return value
at the toplevel.

Figure 15.3 contains most of the code we need for inference. The function
prove is the pivot on which inference turns. It takes an expression and an
optional list of bindings. If the expression doesn't contain logical operators,
it calls prove-simple, and it is here that chaining takes place. This function
works by looking at all the rules with the right predicate, and trying to match
the head of each with the fact it is trying to prove. For each head that matches,

15.3 ANSWERING QUERIES 253

it calls prove on the body, with the new bindings generated by the match.
The lists of bindings returned by each call to prove are then collected by
mapcan and returned:

> (prove-simple 'paren t }(donald nancy) n i l)
(NIL)
> (prove-simple >child ' (?x ?y) n i l)
(((# :?6 . NANCY) (#:?5 . DONALD) (?Y . #:?5) (?X . # : ?6)))

Both of the return values above indicate that there is one way to prove what we
asked about. (A failed proof would return n i l .) The first example generated
one empty set of bindings, and the second generated one set of bindings in
which ?x and ?y were (indirectly) bound to nancy and donald.

Incidentally, we see here a good example of the point made on page 23.
Because our program is written in a functional style, we can test each function
interactively.

What about those gensyms in the second return value? If we are going to
use rules containing variables, we need to avoid the possibility of two rules
accidentally containing the same variable. If we define two rules as follows

(<- (child ?x ?y) (parent ?y ?x))

(<- (daughter ?y ?x) (and (child ?y ?x) (female ?y)))

then we mean that for any x and y, x is the child of y if y is the parent of x,
and for any x and y, y is the daughter of x if y is the child of x and female.
The relationship of the variables within each rule is significant, but the fact
that the two rules happen to use the same variables is entirely coincidental.

If we used these rules as written, they would not work that way. If we
tried to prove that a was b's daughter, matching against the head of the second
rule would leave ?y bound to a and ?x to b. We could not then match the
head of the first rule with these bindings:

> (match '(child ?y ?x)
'(child ?x ?y)
'((?y . a) (?x . b)))

NIL

To ensure that the variables in a rule imply only something about the relations
of arguments within that rule, we replace all the variables in a rule with
gensyms. This is the purpose of the function change-vars. A gensym
could not possibly turn up as a variable in another rule. But because rules can
be recursive, we also have to guard against the possibility of a rule clashing
with itself, so change-vars has to be called not just when a rule is defined,
but each time it is used.

254 EXAMPLE: INFERENCE

(defun prove-and (clauses binds)
(if (null clauses)

(list binds)
(mapcan #'(lambda (b)

(prove (car clauses) b))
(prove-and (cdr clauses) binds))))

(defun prove-or (clauses binds)
(mapcan #'(lambda (c) (prove c binds))

clauses))

(defun prove-not (clause binds)
(unless (prove clause binds)
(list binds)))

Figure 15.4: Logical operators.

, (defmacro with-answer (query &body body)
(l e t ((binds (gensym)))

1(dolist (,b inds (prove ' , que ry))
(l e t ,(mapcar #'(lambda (v)

' (, v (binding ' , v
(va r s - i n query))

,@body))))

Figure 15.5: Interface macro.

,b inds)))

Now all that remains is to define the functions that prove complex expres
sions. These are shown in Figure 15.4. Handling an or or not expression is
particularly simple. In the former case we collect all the bindings returned by
each of the expressions within the or. In the latter case, we return the current
bindings iff the expression within the not yields none.

The function prove-and is only a little more complicated. It works
like a filter, proving the first expression for each set of bindings that can be
established for the remaining expressions. This would cause the expressions
within the and to be considered in reverse order, except that the call to
prove-and within prove reverses them to compensate.

Now we have a working program, but it's not very user-friendly. It's a
nuisance to have to decipher the lists of bindings returned by prove—and

15.4 ANALYSIS 255

(with-answer (p ?x ?y)
(f ?x ?y))

is macroexpanded into:

(do l i s t
(l e t

(f

(# :gl (prove ;

((?x (binding '
(?y (binding '

?x ?y)))

Figure 15.6: Exp

(P
?x

?x ?y)))
#:gD)
: g l)))

ansion of a call to with-answer.

they only get longer as the rules get more complex. Figure 15.5 contains
a macro that will make our program more pleasant to use: a with-answer
expression will take a query (not evaluated) and a body of expressions, and
will evaluate its body once for each set of bindings generated by the query,
with each pattern variable bound to the value it has in the bindings.

> (with-answer (parent ?x ?y)
(format t "~A i s the parent of ~A.~°/0" ?x ?y))

DONALD i s the parent of NANCY.
NIL

This macro does the work of deciphering the bindings for us, and gives us
a convenient way of using prove in programs. Figure 15.6 shows what an
expansion looks like, and Figure 15.7 shows some examples of it in use.

15.4 Analysis

It may seem as if the code we've written in this chapter is simply the natural
way to implement such a program. In fact it is grossly inefficient. What
we've done here, essentially, is to write an interpreter. We could implement
the same program as a compiler.

Here is a sketch of how it would be done. The basic idea would be to pack
the whole program into the macros <- and with-answer, and make them do
at macro-expansion time most of the work the program now does at run-time.
(The germ of this idea is visible in avg, on page 170.) Instead of representing
rules as lists, we would represent them as functions, and instead of having
functions like prove and prove-and to interpret expressions at run-time,
we would have corresponding functions to transform expressions into code.
The expressions are available at the time a rule is defined. Why wait until it

256 EXAMPLE: INFERENCE

If we do a (c l rhash *rules*) and then define the following rules and
facts,

(<- (parent donald nancy))
(<- (parent donald debbie))
(<- (male donald))
(<- (fa ther ?x ?y) (and (parent ?x
(<- (= ?x ?x))
(<- (s i b l i n g ?x ?y) (and (parent ?z

(parent ?z
(not (= ?x

?y) (male ?x))) j

?x)

?y)
? y » »

we will be able to make inferences like the following:

> (with-answer (fa ther ?x ?y)
(format t "~A i s the f a the r of

DONALD i s the f a the r of DEBBIE.
DONALD i s the f a the r of NANCY.
NIL
> (with-answer (s i b l i n g ?x ?y)

(format t "~A i s the s i b l i n g of
DEBBIE i s the s i b l i n g of NANCY.
NANCY i s the s i b l i n g of DEBBIE.

! NIL

Figure 15.7: The program

~A.~°/.M ?x

~k.~V ?x

in use.

?y))

? y »

is used in order to analyze them? The same goes for with-answer, which
would call the same functions as <- to generate its expansion.

This sounds like it would be a lot more complicated than the program
we wrote in this chapter, but in fact it would probably only be about two or
three times as long. Readers who would like to learn about such techniques
should see On Lisp or Paradigms of Artificial Intelligence Programming,
which contain several examples of programs written in this style.

16

Example: Generating HTML

In this chapter we will write a simple HTML generator—a program that auto
matically generates collections of interlinked web pages. As well as illustrat
ing particular Lisp techniques, this chapter offers a characteristic example of
bottom-up programming. We begin with general-purpose HTML utilities, and
then treat them like a programming language in which to write the generator
proper.

16.1 HTML

HTML (HyperText Markup Language) is what web pages are made of. It is a
very simple language. But, if there's not much you can do with HTML, it does
have the advantage of being easy to learn. This section gives an overview of
HTML.

You view web pages using a program called a web browser. The browser
retrieves HTML files, usually from a remote computer, and displays them on
your screen. An HTML file is a text file containing tags that act as instructions
to the browser.

Figure 16.1 contains an example of a simple HTML file, and Figure 16.2
shows how this page might be displayed by a web browser. Notice that the
text between angle brackets is not displayed. These are the tags. HTML has
two sorts of tags. One kind appear in pairs of the form

<tag> . . . </tag>

The first tag marks the beginning of some kind of environment, and the second
marks the end. One tag of this kind is <h2>. All the text that occurs between

257

258 EXAMPLE: GENERATING HTML

<center>
<h2>Your Fortune</h2>
</center>

Welcome to
I n s t i t u t e .

the home page of the
FCI i s a non-prof i t

dedicated to the development of
fo r tunes .
t h a t f a l l

Fortune Cookie
i n s t i t u t i o n
more r e a l i s t i c 1

Here are some examples of for tunes
within our gu ide l ines

Your n o s t r i l h a i r s w i l l grow longer .
You wi 11 never l ea rn how to
Your car w i l l be s t o l e n .
You wi

11 gain weight.

dress proper ly .

Click here to learn |
more about our ongoing research p r o j e c t s .

Figure 16.1: An HTML file.

Your Fortune

Welcome to the home page of the Fortune Cookie Institute. FCI is a non
profit institution dedicated to the development of more realistic fortunes.
Here are some examples of fortunes that fall within our guidelines: j

1. Your nostril hairs will grow longer.

2. You will never learn how to dress properly.

3. Your car will be stolen.

4. You will gain weight.

Click here to learn more about our ongoing research projects.

Figure 16.2: Display of a web page.

16.2 HTML UTILITIES 259

an <h2> and </h2> will be displayed in a larger font. (The largest font is
<hl>.)

Other tags that come in pairs include ("ordered list"), which creates
a numbered list, <center>, which causes text to be centered, and <a.. .>
("anchor"), which creates a link.

It's the links that make text into hypertext. Text that comes between
<a.. .> and will be displayed by most browsers in a distinctive way—
usually it will be underlined—and clicking on that text can make the browser
jump to another page. The part of the tag that comes after the a tells the
browser where to go when someone clicks on the link. A tag like

indicates a link to another HTML file in the same directory. So when anyone
clicks on the link in Figure 16.2, their browser will retrieve and display the
page stored in "research.html" .

Links do not have to point to files in the same directory. Our example
doesn't show this, but links can refer to files anywhere on the Internet.

The other kind of tag doesn't have an end marker. Tags of this kind in
Figure 16.1 include
 ("break"), which indicates a newline, and
("list item"), which indicates a new item within a list environment. HTML has
more tags than this, but the ones used in Figure 16.1 will be almost all we'll
need in this chapter.

16.2 HTML Utilities

In this section we'll define some utilities for generating HTML. Fig
ure 16.3 contains basic utilities for generating tags. All send their output
to * standard-output*; we will be able to redirect the output to a file by
rebinding this variable.

The macros as and with are both for generating expressions between
tags. The former takes a string and prints it between tags,

> (as center "The Missing Lambda")
<center>The Missing Lambda</center>
NIL

while the latter takes a body of code and puts it between calls that print tags:

> (with center
(princ "The Unbalanced Parenthesis"))

<center>
The Unbalanced Parenthesis
</center>
NIL

260 EXAMPLE: GENERATING HTML

(defmacro as (tag content)
' (format t "<~(~A~)>~A</~(~A~

},tag ,content ' , t

(defmacro with (tag ferest body)
'(progn

(format t "~&<r (~A~)>~°/.H >
,©body
(format t "~&</~ (~k~)>~W

(defun brs (&optional (n 1))
(f r e sh - l i ne)
(dotimes (i n)

' (pr inc "
'»))
(t e r p r i))

Figure 16.3: Utilities for

)>"
ag))

, tag)

' . t a g)))

generating tags.

Both use the ~ (...~) format directive to generate lowercase tags. Case is not
significant in tags, but HTML files that contain a lot of tags are easier to read
if the tags are lowercase.

While as tends to put its output all on one line, with puts the tags on
separate lines. (The ~& format directive ensures that output begins on a new
line.) This is done only to make the HTML files more readable. Whitespace
around tags has no effect when the pages are displayed.

The last utility in Figure 16.3, brs , just generates multiple line breaks. In
many browsers these can be used to control vertical spacing.

Figure 16.4 contains utilities for use in generating HTML files. The first
returns the name of the file corresponding to a symbol. In a real application,
this function might return a path to a designated directory. Here it simply
appends " .html" to the symbol's name.

The macro page is for generating a whole web page. It is similar in spirit
to with-open-f i l e , on which it's built. The expressions in the body will
be evaluated with * s tandard-output* bound to a stream made by opening
the HTML file corresponding to name.

Section 6.7 showed how we could bind a special variable temporarily. In
the example on page 113, we bound *pr in t -base* to 16 for the duration
of a l e t . The expansion of page similarly binds *standard-output* to a
stream that points to an HTML file. If we call as or p r inc within the body of
a page, the output gets sent to the corresponding file.

16.2 HTML UTILITIES 261

(defun h t m l - f i l e (base)
(format n i l *'~(~A~) .html" base))

(defmacro page (name t i t l e ftrest
(l e t ((t i (gensym)))

body)

' (w i th -open- f i l e (*standard-output* |
(h tml - f i l e
: d i r e c t i o n
: i f - e x i s t s

(l e t ((, t i , t i t l e))
(as t i t l e , t i)
(with center

(as h2 (s t r ing-upcase
! (brs 3)
i ,®body))))

,name)
:output
.•supersede)

• t i)))

Figure 16.4: HTML file utilities.

The t i t l e will be printed at the top of the page, followed by whatever
output is generated by the body. So the call

(page }paren "The Unbalanced Pa ren thes i s "
(princ "Something in h i s expression t o l d h e r . . . "))

will cause the file "paren.html" (as html-f i l e is currently defined) to
contain:

<title>The Unbalanced Parenthesis</title>
<center>
<h2>THE UNBALANCED PARENTHESIS</h2>
</center>

Something in his expression told her...

All the tags here are ones we've seen before, except < t i t l e > . The text given
as the <t i t le> in an HTML file does not appear on the page itself; it is usually
the title of the window containing the page.

Figure 16.5 contains utilities for generating links. The wi th - l ink macro
is similar in spirit to with. It takes a body of code, which will be evaluated
between expressions that generate a link to the HTML file whose base name is
given as the second argument:

262 EXAMPLE: GENERATING HTML

(defmacro with-link (dest &rest body)
'(progn

(format t "" (html-file ,dest))

,@body

(princ "")))

(defun link-item (dest text)

(princ "")

(with-link dest

(princ text)))

(defun button (dest text)

(princ "[")

(with-link dest

(princ text))

(format t "]~°/,"))

Figure 16.5: Utilities for generating links.

> (wi th- l ink ' cap tu re
(princ "The Captured Variable"))

The Captured Variable
,,"

It is used in l ink- i tem, which takes a string and generates a list item that is
also a link,

> (l ink- i t em 'bq "Backquote!")
Backquote!
""

and in button, which generates a link between square brackets,

> (button 'he lp "Help")
[Help]
NIL

so that it resembles a button.

16.3 An Iteration Utility

In this section we pause to define a general-purpose utility that we are going
to need in the program proper. How do we know beforehand that we are

16.3 AN ITERATION UTILITY 263

(defun map3 (fn 1st)
(labels ((rec (curr prev next left)

(funcall fn

(when left
(rec (car

curr

curr prev next)

left)

(cadr left)

(cdr left)))))

(when 1st

(rec (car 1st) nil

Figure 16.6

(cadr 1st) (cdr 1st)))))

Iteration by threes.

going to need a new utility? We don't. What usually happens is that you
start writing a program, discover the need for the new utility, stop to write
it, then continue writing the original program. But it would be confusing
to represent here all the stops and starts of real programming. Instead we
consider just the final results, with the caveat that writing such programs is
never so straightforward as it might seem. It takes a lot of rewriting to make
a program simple.

Our new utility will be a variant of mapc. It is defined in Figure 16.6.
It takes a function and a list, and for each element of the list, calls the
function with three arguments: that element, the previous element, and the
next element. (It uses n i l when there is no previous or next element.)

> (map3 #'(lambda (&rest args) (princ args))
'(a b c d))

(A NIL B) (B A C) (C B D) (D C NIL)
NIL

Like mapc it always returns n i l . Situations that call for this kind of utility
arise often. We will see one in the next section, where we want to make each
page have a link to the previous page and the next one.

A subset of the general problem happens when you want to do something
between each pair of elements in a list:

> (map3 #'(lambda (c p n)
(pr inc c)
(if n (pr inc » I ")))

' (a b e d))
A | B | C | D
NIL

264 EXAMPLE: GENERATING HTML

<section y item .
1 / • ' \

section ^- item ^ index 1 \ ' X
section \ item s

Figure 16.7: Structure of the site.

Programmers frequently encounter this kind of problem—not often enough
for a language to have a built-in operator for it, perhaps, but often enough
that it is very convenient to be able to define such an operator oneself.

16.4 Generating Pages

Like books and magazines, collections of web pages are often organized in
the form of a tree. A book can contain chapters, which contain sections,
which contain subsections, and so on. Collections of web pages typically
have the same shape, even if they don't use the same names.

In this section we'll build a program that can generate collections of web
pages. They will be structured as follows. The first page will be a table of
contents, with links to pages representing one or more sections. Each section
will be a page of links to items contained in that section. An item will be a
page containing ordinary text.

As well as these links, which follow the lines of the tree, each page will
have links leading backward, up, and forward. The backward and forward
links will lead to the preceding or succeeding sibling page. For example, the
forward link on an item's page will lead to the next item in the same section,
if there is one. The up links will lead back up the tree—from item to section,
and from section to table of contents. There will also be an index: this will be
another page of links, listing all the items in alphabetical order. Figure 16.7
shows the structure of the links between the pages our program will generate.

Figure 16.8 contains the data structures that we'll need and the operators
for defining pages. Our program will deal with two kinds of objects: items
and sections. They have similar structures, but where a section will contain a
list of items, an item will contain a block of text.

Both sections and items have an id field. Ids will be symbols, and serve
two purposes. One we see in the definitions of def item and def sect ion:
the id will be set to the item or section we create, which gives us a way of
referring to it. The ids will also serve as the base names of the corresponding
files, so the page representing an item f oo, for example, will be written to
, , foo.html , \

16.4 GENERATING PAGES 265

(defparameter *sections* nil)

(defstruct item

id title text)

(defstruct section

id title items)

(defmacro defitem (id title text)

'(setf ,id

(make-item rid ' ,id
:title ,title

:text ,text)))

(defmacro defsection (id title &rest

'(setf ,id

(make-section :id ' ,id

rtitle ,title
1 litems (list ,

(defun defsite (&rest sections)
(setf *sections* sections))

items)

©items))))

Figure 16.8: Defining a site.

Sections and items also both have t i t l e fields. These should be strings,
and will be used as the titles of the corresponding pages.

The order of items within a section will be that of the arguments to
defsect ion. The order of the sections in the table of contents is similarly
determined by the arguments to def s i t e .

Figure 16.9 contains the functions that generate the index and the table of
contents. The constants contents and index are strings that will serve as
both the titles of those pages and the base names of the files containing them.

The functions gen-contents and gen-index are similar in outline.
Both open an HTML file, generate a title, and then generate a list of links.
They differ in that the list of items in the index has to be sorted first. This
list is built by a l l - i t e m s , which looks at each item and merges it into a list
of items seen so far, using t i t l e < as the ordering function. It's important
that the titles are compared using s t r i n g - l e s s p , which ignores case, rather
than s t r ing<, which doesn't.

266 EXAMPLE: GENERATING HTML

(defconstant contents "contents")
(defconstant index "index")

(defun gen-contents (fcoptional (sections *sections*))

(page contents contents

(with ol

(dolist (s sections)

(link-item (section-id s) (section-title s))

(brs 2))

(link-item index (string-capitalize index)))))

(defun gen-index (feoptional (sections *sections*))

(page index index

(with ol
(dolist (i (all-items sections))

(link-item (item-id i) (item-title i))

(brs 2)))))

(defun all-items (sections)

(let ((is nil))

(dolist (s sections)

(dolist (i (section-items s))

(setf is (merge 'list (list i) is #'title<))))

is))

(defun title< (x y)

(string-lessp (item-title x) (item-title y)))

Figure 16.9: Generating index and table of contents.

In a real application, the comparison would have to be more sophisticated.
It would at least have to ignore initial articles like "a" and "the", for example.

Figure 16.10 contains the remainder of the code: gen - s i t e , which gen
erates the whole collection of web pages, along with the functions it calls to
generate sections and items.

The whole collection of pages means the table of contents, the index, the
pages representing each section, and the pages representing each item. The
table of contents and the index are generated by the functions in Figure 16.9.
The sections and items are generated by gen-sect ion, which generates the
page for the section, and calls g e n - i t em to generate a page for each item in
that section.

16.4 GENERATING PAGES 267

(defun gen-site ()

(map3 #'gen-section *sections*)

(gen-contents)

(gen-index))

(defun gen-section (sect <sect sect>)

(page (section-id sect) (section-title sect)

(with ol

(map3 #'(lambda (item <item item>)

(link-item (item-id item)

(item-title item))
(brs 2)

(gen-item sect item <item item>))
(section-items sect)))

(brs 3)

(gen-move-buttons (if <sect (section-id <sect))

contents

(if sect> (section-id sect>)))))

(defun gen-item (sect item <item item>)
(page (item-id item) (item-title item)
(princ (item-text item))
(brs 3)

(gen-move-buttons (if <item (item-id <item))

(section-id sect)

(if item> (item-id item>)))))

(defun gen-move-buttons (back up forward)
(if back (button back "Back"))
(if up (button up "Up"))
(if forward (button forward "Forward")))

Figure 16.10: Generating site, sections, and items.

The two functions begin and end similarly. Both take arguments represent
ing an object, its left sibling, and its right sibling; both begin with a title taken
from the t i t l e field of the object; both end by calling gen-move-buttons
to generate buttons that lead back to the left sibling, up to the parent object,
and forward to the right sibling. It's in the middle that gen-sec t ion and
gen- i t em differ. While the former generates an ordered list of links to the
items it contains, the latter just dumps its t e x t to the output file.

268 EXAMPLE: GENERATING HTML

(defitem des "Fortune Cookies: Dessert or Fraud?" "...")

(defitem case "The Case for Pessimism" "...")

(defsection position "Position Papers" des case)

(defitem luck "Distribution of Bad Luck" "...")

(defitem haz "Health Hazards of Optimism" "...")

(defsection abstract "Research Abstracts" luck haz)

(defsite position abstract)

Figure 16.11: A small site.

What the text of an item contains is entirely up to the user. It's perfectly
ok for it to contain HTML tags, for example. The text could well be generated
by another program.

Figure 16.11 shows how one might define a small collection of pages by
hand. In this example, the items are recent publications of the Fortune Cookie
Institute.

17

Example: Objects

In this chapter we're going to implement our own object-oriented language
within Lisp. Such a program is called an embedded language. Embedding
an object-oriented language in Lisp makes an ideal example. As well as
being a characteristic use of Lisp, it shows how naturally the abstractions of
object-oriented programming map onto the fundamental abstractions of Lisp.

17.1 Inheritance

Section 11.10 explained how generic functions differ from message-passing.
In the message-passing model,

1. objects have properties,

2. and respond to messages,

3. and inherit properties and methods from their parents.

CLOS, of course, uses the generic function model. But in this chapter we are
interested in writing a minimal object system, not a rival to CLOS, so we will
use the older model.

In Lisp, there are already several ways to store collections of properties.
One way would be to represent objects as hash tables, and store their properties
as entries within them. We then have access to individual properties through
gethash:

(gethash ' co lo r obj)

269

270 EXAMPLE: OBJECTS

(defun rget (prop obj)
(multiple-value-bind (val

(if in
(values val in)

(let ((par (gethash

in) (gethash prop

:parent obj)))

(and par (rget prop par))))))

(defun tell (obj message &rest args)

(apply (rget message obj) obj args))

Figure 17.1: Inheritance.

obj)

Since functions are data objects, we can store them as properties too. This
means that we can also have methods; to invoke a given method of an object
is to funcall the property of that name:

(funcall (gethash 'move obj) obj 10)

We can define a Smalltalk style message-passing syntax upon this idea,

(defun tell (obj message &rest args)

(apply (gethash message obj) obj args))

so that to tell obj to move 10, we can say

(t e l l obj 'move 10)

In fact, the only ingredient plain Lisp lacks is inheritance. We can
implement a simple version of that by defining a recursive version of gethash,
as in Figure 17.1. (The name rge t stands for "recursive get.") Now with
a total of eight lines of code we have all three of the minimal elements of
object-oriented programming.

Let's try out this code on our original example. We create two objects,
one a child of the other:

> (setf circle-class (make-hash-table)

our-circle (make-hash-table)
(gethash -.parent our-circle) circle-class
(gethash 'radius our-circle) 2)

2

The object c i r c l e - c l a s s will hold the area method for all circles. It will
be a function of one argument, the object to which the message is originally
sent:

17.2 MULTIPLE INHERITANCE 271

> (setf (gethash 'area circle-class)
#'(lambda (x)

(* p i (expt (rget ' r a d i u s x) 2))))
#<Interpreted-Function BF1EF6>

Now we can ask for the area of o u r - c i r c l e , and its value will be calculated
according to the method defined for the class. We use rge t to read a property,
and t e l l to invoke a method:

> (rget 'radius our-circle)

2

T

> (tell our-circle 'area)

12.566370614359173

Before going on to improve this program, it's worth pausing to consider
what we have done. With eight lines of code we have made plain old pre-CLOS
Lisp into an object-oriented language. How did we manage to achieve such a
feat? There must be some sort of trick involved, to implement object-oriented
programming in eight lines of code.

There is a trick, but it is not a programming trick. The trick is, Lisp
already was an object-oriented language, or rather, something more general.
All we had to do was put a new facade on the abstractions that were already
there.

17.2 Multiple Inheritance

So far we have only single inheritance—an object can only have one
parent. But we can have multiple inheritance by making the parent property
a list, and defining rge t as in Figure 17.2.

With single inheritance, when we wanted to retrieve some property of an
object, we just searched recursively up its ancestors. If the object itself had
no information about the property we wanted, we looked at its parent, and so
on. With multiple inheritance we want to perform the same kind of search,
but our job is complicated by the fact that an object's ancestors can form a
graph instead of a simple tree. We can't just search this graph depth-first.
With multiple parents we can have the hierarchy shown in Figure 17.3: a is
descended from b and c, which are both descended from d. A depth-first (or
rather, height-first) traversal would go a, b, d, c, d. If the desired property
were present in both d and c, we would get the value stored in d, not the
one stored in c. This would violate the principle that subclasses override the
default values provided by their parents.

If we want to implement the usual idea of inheritance, we should never
examine an object before one of its descendants. In this case, the proper

272 EXAMPLE: OBJECTS

(defun rget (prop obj)
(dolist (c (precedence

(multiple-value-bind

obj))

(val in) (gethash prop c)

1 (if in (return (values val in))))))

(defun precedence (obj)

(labels ((traverse (x)

(cons x

(mapcan #'traverse

(delete-duplicates (1

Figure 17.2:

(gethash :parents

traverse obj))))

Multiple inheritance.

x)))))

Figure 17.3: Multiple paths to a superclass.

search order would be a, b, c, d. How can we ensure that the search always
tries descendants first? The simplest way is to assemble a list of an object
and all its ancestors in the proper precedence order, then look at each one in
turn.

The function precedence returns a list of an object and all its ancestors
in the correct order. It begins by calling t r a v e r s e to build a list representing
the objects encountered in a depth-first traversal. If any of the objects share
parents, there will be duplicates in this list. If we preserve only the last of each
set of duplicates, we will get a precedence list in the natural order defined by
CLOS. (Deleting all but the last duplicate corresponds to rule 3 in the algorithm
described on page 183.) The Common Lisp function de l e t e -dup l i ca t e s
is defined to behave this way, so if we just call it on the result of the depth-first
traversal, we will get the correct precedence list. Once the precedence list is
created, rge t searches for the first object with the desired property.

17A DEFINING OBJECTS 273

By taking advantage of precedence we can say, for example, that a patriotic
scoundrel is a scoundrel first and a patriot second:

> (setf scoundrel (make-hash-table)
patriot (make-hash-table)
patriotic-scoundrel (make-hash-table)
(gethash 'serves scoundrel) 'self
(gethash 'serves patriot) 'country
(gethash :parents patriotic-scoundrel)

(list scoundrel patriot))
(#<Hash-Table C41C7E> #<Hash-Table C41F0E>)

> (rget 'serves patriotic-scoundrel)
SELF

T

At this point we have a program that's powerful, but ugly and inefficient.
In the second stage of the life of a Lisp program, we refine this sketch into
something usable.

17.3 Defining Objects

Among the first improvements we need is a function to create objects. The
way our program represents objects and their parents need not be visible to
the user. If we define a function to build objects, users will be able to make
an object and specify its parents in one step. And we can build an object's
precedence list at the time it is created, instead of expensively reconstructing
it every time we need to find a property or a method.

If we are going to maintain precedence lists instead of constructing them
as we need them, we have to deal with the possibility of the lists becoming
outdated. Our strategy will be to keep a list of all existing objects, and
whenever something's parents are modified, to remake the precedence list of
every object affected. This is expensive, but since queries are likely to be
much more common than the redefinition of objects' parents, we will get a
net saving. Our program will not become any less flexible by this change; we
just shift costs from a frequent operation to an infrequent one.

Figure 17.4 contains the new code.0 The global *objs* will be a list
of all current objects. The function paren t s retrieves an object's parents;
its converse (se t f paren ts) not only sets an object's parents, but calls
make-precedence to rebuild any precedence list that might thereby have
changed. The lists are built by precedence, as before.

Now instead of calling make-hash-table to make objects, users will
call obj, which creates a new object and defines its parents in one step. We
also redefine rge t to take advantage of stored precedence lists.

274 EXAMPLE: OBJECTS

(defvar *objs* n i l)

(defun parents (obj) (gethash -.parents obj))

(defun (setf parents) (val obj)

(progl (setf (gethash :parents obj) val)

(make-precedence obj)))

(defun make-precedence (obj)

(setf (gethash ipreclist obj) (precedence obj))

(dolist (x *objs*)

(if (member obj (gethash :preclist x))

(setf (gethash ipreclist x) (precedence x)))))

(defun obj (ferest parents)

(let ((obj (make-hash-table)))
(push obj *objs*)
(setf (parents obj) parents)
obj))

(defun rget (prop obj)

(dolist (c (gethash ipreclist obj))

(multiple-value-bind (val in) (gethash prop c)

(if in (return (values val in))))))

Figure 17.4: Creating objects.

17.4 Functional Syntax

Another place for improvement is the syntax of message calls. The t e l l
itself is unnecessary clutter, and because it makes verbs come third, it means
that our programs can no longer be read like normal Lisp prefix expressions:

(t e l l (t e l l obj ' f ind-owner) 'find-owner)

We can get rid of the t e l l syntax by defining property names as functions,
using the macro def prop in Figure 17.5. The optional argument meth?, if
true, signals that this property should be treated as a method. Otherwise it will
be treated as a slot, and the value retrieved by rge t will simply be returned.
Once we have defined the name of either kind of property,

(defprop find-owner t)

17.5 DEFINING METHODS 275

(defmacro defprop (name feoptional meth?)
' (progn

(defun ,name (obj &rest args)
, (i f meth?

'(run-methods obj ',name args)
' (r g e t ',name ob j)))

(defun (se t f ,name) (val obj)
(se t f (gethash ',name obj) v a l))))

(defun run-methods (obj name args)
(l e t ((meth (rget name ob j)))

(if meth
(apply meth obj args)
(e r ro r "No ~A method for "A." name o b j))))

Figure 17.5: Functional syntax.

we can refer to it with a function call, and our code will read like Lisp again:

(find-owner (find-owner obj))

Our previous example now becomes somewhat more readable:

> (progn

(setf scoundrel (obj)

patriot (obj)

patriotic-scoundrel (obj scoundrel patriot))

(defprop serves)

(setf (serves scoundrel) 'self

(serves patriot) 'country)

(serves patriotic-scoundrel))

SELF

T

17.5 Defining Methods

So far we define a method by saying something like:

(defprop area t)

(setf circle-class (obj))

276 EXAMPLE: OBJECTS

(defmacro defmeth (name obj parms &rest
(let ((gobj (gensym)))

'(let ((,gobj ,obj))

(setf (gethash ',name ,gobj)
(labels ((next () (get-next

body)

,gobj > ,name)))
! #'(lambda ,parms ,©body))))))

(defun get-next (obj name)

(some #'(lambda (x) (gethash name x))
(cdr (gethash ipreclist obj))))

Figure 17.6: Defining methods.

(setf (area circle-class)

#;(lambda (c) (* pi (expt (radius c) 2))))

Within a method we can get the effect of the built-in call-next-method
by calling the first thing we can find under the same name in the cdr of the
object's :prec l i s t . So, for example, if we want to define a special circle
that prints something in the process of returning its area, we say:

(setf grumpy-circle (obj c i r c l e - c l a s s))

(set f (area grumpy-circle)
#'(lambda (c)

(format t "How dare you stereotype me!""/,")
(funcall (some #'(lambda (x) (gethash 'area x))

(cdr (gethash :prec l i s t c)))
c)))

The funcall here is equivalent to a call-next-method, but it shows more
internals than we want to look at.

The macro defmeth in Figure 17.6 provides a convenient way to define
methods, and makes it easy to call the next method within them. A call
to defmeth expands into a setf, but the setf occurs within a labels
expression that defines next as a function to retrieve the next method. This
function is like next-met hod-p (page 188), but returns something we can
call, and so serves the purpose of call-next-method as well.0 Now the
preceding two methods could be defined:

(defmeth area circle-class (c)

(* pi (expt (radius c) 2)))

77.7 INSTANCES 277

(defmeth area grumpy-circle (c)
(format t "How dare you s te reo type me!~%")
(funcal l (next) c))

Incidentally, notice that the definition of defmeth takes advantage of symbol
capture. The body of the method is inserted into a context where the function
next is locally defined.

17.6 Instances

So far we have not distinguished between classes and instances. We have
used a single term, object, to cover both. It is elegant and flexible to treat all
objects the same, but grossly inefficient. In most object-oriented applications
the inheritance graph will be bottom-heavy. In a simulation of traffic, for
example, we might have less than ten objects representing classes of vehicles,
and hundreds of objects representing particular vehicles. Since the latter will
all share a few precedence lists, it is a waste of time to create them, and a
waste of space to store them.

Figure 17.7 defines a macro ins t , for making instances. Instances are
like other objects (which now may as well be called classes), but have only
one parent and do not maintain precedence lists. They are also not included
in the list *obj s*. In the preceding examples, we could have said:

(setf grumpy-circle (i n s t c i r c l e - c l a s s))

Since some objects will no longer have precedence lists, the functions rge t
and get -next are now redefined to look at the parents of such objects instead.
This gain in efficiency has cost us nothing in flexibility. We can do everything
with an instance that we can do with any other kind of object, including make
instances of it and redefine its parents. In the latter case, (se t f paren ts)
will effectively convert the object to a "class."

17.7 New Implementation

None of the improvements we've made so far have been made at the expense of
flexibility. In the latter stages of its development, a Lisp program can usually
benefit from some sacrifice of flexibility, and this case is no exception. So
far we have been representing all objects as hash tables. This gives us more
flexibility than we need, at greater cost than we want. In this section we will
rewrite our program to represent objects as simple vectors.

278 EXAMPLE: OBJECTS

(defun inst (parent)
(let ((obj (make-hash-table)))
(setf (gethash -.parents obj) parent)
obj))

(defun rget (prop obj)

(let ((prec (gethash ipreclist obj)))

(if prec

(dolist (c prec)

(multiple-value-bind (val in) (gethash prop c)

(if in (return (values val in)))))

(multiple-value-bind (val in) (gethash prop obj)

(if in

(values val in)

(rget prop (gethash :parents obj)))))))

(defun get-next (obj name)
(let ((prec (gethash :preclist obj)))
(if prec

(some #'(lambda (x) (gethash name x))
(cdr prec))

(get-next (gethash obj -.parents) name))))

Figure 17.7: Defining instances.

This change will mean giving up the possibility of defining new properties
on the fly. So far we can define a property of any object simply by referring
to it. Now when a class is created, we will have to give a list of the new
properties it has, and when instances are created, they will have exactly the
properties they inherit.

In the previous implementation there was no real division between classes
and instances. An instance was just a class that happened to have one parent.
If we modified the parents of an instance, it would become a class. In the new
implementation there will be a real division between classes and instances; it
will no longer be possible to convert instances to classes.

The code in Figures 17.8-17.10 is a complete new implementation. Fig
ure 17.8 defines the new operators for creating classes and instances. Classes
and instances are represented as vectors. The first three elements of each will
contain information used by the program itself, and the first three macros in
Figure 17.8 are for referring to these elements:

17.7 NEW IMPLEMENTATION 279

(defmacro parents (v) f(svref ,v 0))

(defmacro layout (v) '(the simple-vector (svref ,v 1)))
(defmacro preclist (v) '(svref ,v 2))

(defmacro class (feoptional parents &rest props)

'(class-fn (list ,@parents) ',props))

(defun class-fn (parents props)

(let* ((all (union (inherit-props parents) props))
(obj (make-array (+ (length all) 3)

:initial-element mil)))

(setf (parents obj) parents

(layout obj) (coerce all 'simple-vector)

(preclist obj) (precedence obj))

obj))

(defun inherit-props (classes)
(delete-duplicates
(mapcan #'(lambda (c)

(nconc (coerce (layout c) 'list)

(inherit-props (parents c))))

classes)))

(defun precedence (obj)

(labels ((traverse (x)

(cons x

(mapcan #'traverse (parents x)))))

(delete-duplicates (traverse obj))))

(defun inst (parent)

(let ((obj (copy-seq parent)))

(setf (parents obj) parent

(preclist obj) nil)

(fill obj :nil .-start 3)

obj))

Figure 17.8: Vector implementation: Creation.

280 EXAMPLE: OBJECTS

1. The paren ts field takes the place of the : paren ts hash table entry in
the old implementation. In a class it will contain a list of parent classes.
In an instance it will contain a single parent class.

2. The layout field will contain a vector of property names, indicating
the layout of the class or instance from the fourth element on.

3. The p r e c l i s t field takes the place of the : p r e c l i s t hash table entry
in the old implementation. It will contain the precedence list of a class,
or n i l in an instance.

Because these operators are macros, they can all be used in the first argument
to se t f (Section 10.6).

The macro c l a s s is for creating classes. It takes an optional list of
superclasses, followed by zero or more property names. It returns an object
representing a class. The new class will have the union of its local properties
(that is, property names) and those inherited from all its superclasses.

> (se t f *p r in t - a r r ay* n i l
geom-class (c l a s s n i l area)
c i r c l e - c l a s s (c l a s s (geom-class) r ad ius))

#<Simple-Vector T 5 C6205E>

Here we create two classes: geom-class has no superclasses, and only one
property, area; c i r c l e - c l a s s is a subclass of geom-class, and adds the
property radius . 1 The layout of c i r c l e - c l a s s

> (coerce (layout c i r c l e - c l a s s) ' l i s t)
(AREA RADIUS)

shows the names of the last two of its five fields.2

The c l a s s macro is just an interface to c l a s s - f n, which does the real
work. It calls i n h e r i t - p r o p s to assemble a list of the properties of all the
new object's parents, builds a vector of the right length, and sets the first
three fields appropriately. (The p r e c l i s t is built by precedence, which
is essentially unchanged.) The remaining fields of the class are set to m i l
to indicate that they are uninitialized. To examine the area property of
c i r c l e - c l a s s we could say:

> (svref c i rc le-class
(+ (position 'area (layout circle-class)) 3))

:NIL

'When classes are displayed, *p r in t - a r r ay* should be n i l . The first element in the
p r e c l i s t of any class is the class itself, so trying to display the internal structure of a class
would cause an infinite loop.

2The vector is coerced to a list simply to see what's in it. With *pr in t -a r ray* set to n i l ,
the contents of a vector would not be shown.

17.7 NEW IMPLEMENTATION 281

(declaim (i n l i n e lookup (set f lookup)))

(defun rge t (prop obj next?)
(l e t ((prec (p r e c l i s t ob j)))

(i f prec
(d o l i s t (c (if next? (cdr prec) prec) m i l)

(l e t ((va l (lookup prop c)))
(unless (eq val m i l) (r e tu rn v a l))))

(l e t ((va l (lookup prop ob j)))
(i f (eq val m i l)

(rget prop (parents obj) n i l)
v a l)))))

(defun lookup (prop obj)
(l e t ((off (pos i t ion prop (layout obj) : t e s t # ' e q)))

(i f off (svref obj (+ off 3)) m i l)))

(defun (set f lookup) (val prop obj)
(l e t ((off (pos i t ion prop (layout obj) : t e s t # ' e q)))

(if off
(se t f (svref obj (+ off 3)) va l)
(e r ro r "Can't s e t ~A of ~A." val o b j))))

Figure 17.9: Vector implementation: Access.

Later we will define access functions that do this automatically.
Finally, the function i n s t is used for making instances. It does not have

to be a macro, because it takes just one argument:

> (setf o u r - c i r c l e (i n s t c i r c l e - c l a s s))
#<Simple-Vector T 5 C6464E>

It's instructive to compare i n s t to c l a s s - f n, which does something similar.
Because instances have only one parent, there is no need to determine what
properties are inherited. The instance can just copy the layout of its parent
class. Nor is there any need to build a precedence list, because instances
don't have them. Building instances will thus be much faster than building
classes—which is as it should be, because creating instances is more common
than creating classes in most applications.

Now that we can build a hierarchy of classes and instances we need func
tions to read and write their properties. The first function in Figure 17.9 is the

282 EXAMPLE: OBJECTS

new definition of rge t . It is similar in shape to the rge t in Figure 17.7. The
two branches of the conditional deal with classes and instances respectively.

1. If the object is a class, we traverse its precedence list until we find an
object in which the value of the desired property is not : n i l . If we
don't find one we return : n i l .

2. If the object is an instance, we look for the property locally, and make
a recursive call to rge t if it isn't there.

The new third argument to rge t , next?, will be explained later. For now
suffice it to say that if it is n i l , rge t will behave as usual.

The function lookup and its inverse play the role that gethash did in the
old rge t . They use an object's layout to retrieve or set a property with a
given name. This query duplicates the one we made earlier:

> (lookup ' a r ea c i r c l e - c l a s s)
:NIL

Since the se t f of lookup is also defined, we could define an area method
for c i r c l e - c l a s s by saying:

(setf (lookup 'area circle-class)
#'(lambda (c)

(* pi (expt (rget 'radius c nil) 2))))

In this program, as in the earlier version, there is no hard distinction between
slots and methods. A "method" is just a field with a function in it. This will
soon be hidden by a more convenient front-end.

Figure 17.10 contains the last of the new implementation. This code
does not add any power to the program, but makes it easier to use. The
macro def prop is essentially unchanged; now it just calls lookup instead of
gethash. As before, it allows us to refer to properties in a functional syntax:

> (defprop radius)
(SETF RADIUS)
> (radius our-circle)
:NIL
> (setf (radius our-circle) 2)
2

If the optional second argument to defprop is true, it expands into a call to
run-methods, which is also almost unchanged.

77.7 NEW IMPLEMENTATION 283

(declaim (inline run-methods))

(defmacro defprop (name feoptional meth?)
'(progn

(defun ,name (obj &rest args)
,(if meth?

'(run-methods obj ',name args)
' (rget ',name obj nil)))

(defun (setf ,name) (val obj)

(setf (lookup >,name obj) val))))

(defun run-methods (obj name args)
(let ((meth (rget name obj nil)))
(if (not (eq meth :nil))

(apply meth obj args)
(error "No ~A method for ~A." name obj))))

(defmacro defmeth (name obj parms ferest body)
(let ((gobj (gensym)))

'(let ((,gobj ,obj))
(defprop ,name t)
(setf (lookup ',name ,gobj)

(labels ((next () (rget ,gobj ',name t)))

#'(lambda ,parms ,@body))))))

Figure 17.10: Vector implementation: Interface macros.

Finally, the function defmeth provides a convenient way to define meth
ods. There are three things new about this version: it does an implicit
defprop, it calls lookup instead of gethash, and it calls rge t instead of
get-next (page 278) to get the next method. Now we see the reason for
the additional argument to rge t . It is so similar to ge t -next that we can
implement both in one function by adding an extra argument. If this extra
argument is true, rge t takes the place of ge t -next .

Now we can achieve the same effect as the preceding method definition
with something a lot cleaner:

(defmeth area circle-class (c)
(* pi (expt (radius c) 2)))

284 EXAMPLE: OBJECTS

Notice that instead of calling rge t we can simply call rad ius , because we
defined it as a function with def prop. Because of the implicit def prop done
by def meth, we can likewise call area to get the area of o u r - c i r c l e :

> (area o u r - c i r c l e)
12.5156370614359173

17.8 Analysis

We now have an embedded language suitable for writing real object-oriented
programs. It is simple, but for its size quite powerful. And in typical
applications it will also be fast. In a typical application, operations on
instances should be more common than operations on classes. The central
point of our redesign was to make operations on instances cheap.

In our program, building classes is slow and generates a lot of garbage.
But this will be acceptable if classes are not built at times when speed is
critical. The things that have to be fast are access and instance creation.
Access in this program will be about as fast as we can expect without compile-
time optimizations.0 So will instance creation. And neither operation causes
consing. Except, that is, for the vector that represents the instance itself.
It seems natural enough that this should be dynamically allocated. But we
could avoid dynamically allocating even instances, if we used a strategy like
the one presented in Section 13.4.

Our embedded language is a characteristic example of Lisp programming.
The mere fact of being an embedded language makes it one. But also charac
teristic of Lisp is the way in which it evolved from a small, limited version,
through a powerful but inefficient version, to a fast but slightly restrictive
version.

Lisp's reputation for slowness comes not so much from its own nature
(Lisp compilers have been able to generate code as fast as compiled C since
the 1980s) as from the fact that so many programmers stop at the second
stage. As Richard Gabriel wrote,

In Lisp, writing programs that perform very poorly is quite easy;
in C it is almost impossible.0

This is simply a true statement, but it can be read as either a point for Lisp or
a point against it:

1. By trading speed for flexibility, you can write programs very easily in
Lisp ; in C you don't have this option.

2. Unless you optimize your Lisp code, it is all too easy to end up with
slow software.

17.8 ANALYSIS 285

Which interpretation applies to your programs depends entirely on you. But
at least in Lisp you have the option of trading execution speed for your time,
in the early stages.

One thing our example program is not good for is as a model of CLOS
(except possibly for elucidating the mystery of how cal l -next-method
works). How much similarity could there be between the elephantine CLOS
and this 70-line mosquito? Indeed, the contrasts between the two programs
are more instructive than the similarities. First of all, we see what a wide
latitude the term "object-oriented" has. Our program is more powerful than
a lot of things that have been called object-oriented, and yet it has only a
fraction of the power of CLOS.

Our program differs from CLOS in that methods are methods of some
object. This concept of methods makes them equivalent to functions that
dispatch on their first argument. And when we use the functional syntax
to invoke them, that's just what our methods look like. A CLOS generic
function, in contrast, can dispatch on any of its arguments. The components
of a generic function are called methods, and if you define them so that they
specialize only their first argument, you can maintain the illusion that they
are methods of some class or instance. But thinking of CLOS in terms of the
message-passing model of object-oriented programming will only confuse
you in the end, because CLOS transcends it.

One of the disadvantages of CLOS is that it is so large and elaborate that
it conceals the extent to which object-oriented programming is a paraphrase
of Lisp. The example in this chapter does at least make that clear. If we
were content to implement the old message-passing model, we could do it in
a little over a page of code. Object-oriented programming is one thing Lisp
can do. A more interesting question is, what else can it do?

286 EXAMPLE: OBJECTS

A: Debugging

This appendix shows how to debug Lisp programs, and gives examples of some of the
more common errors you might encounter.

Break Loops

If you ask Lisp to do something it can't, evaluation will be interrupted by an error
message, and you will find yourself in something called a break loop. The way a
break loop behaves is implementation-dependent, but usually it will display at least
three things: an error message, a list of options, and a distinctive prompt.

You can evaluate expressions within a break loop just as you can within the
toplevel. From within the break loop you may be able to discover the cause of the
error, or even correct it and continue the evaluation of your program. However, the
most common thing you will want to do in a break loop is to get out of it. Most errors
are caused by typos or minor oversights, so usually you will just abort the program
and return to the toplevel. In this hypothetical implementation, we type : abort to
return to the toplevel:

> (/ 1 0)
Error: Division by zero .

Options: : abor t , :backtrace
» :abort
>

What you actually type in these situations depends on the implementation.
If an error occurs while you are in a break loop, you end up in another break

loop. Most Lisps indicate the level of break loop you're in, either by printing multiple
prompts, or by printing a number before the prompt:

287

288 APPENDIX A

» (/ 2 0)
Error: Division by zero.

Options: :abort, :backtrace, :previous
>»

Now we are two break loops deep. At this point we have a choice of returning to the
previous break loop or all the way to the toplevel.

Traces and Backtraces

When your program isn't doing what you expect, sometimes the first thing to settle
is, what is it doing? If you type (t r ace foo), then Lisp will display a message
each time foo is called or returns, showing the arguments passed to it or the values it
returned. You can trace any user-defined function.

A trace is usually indented to show the depth in the calling tree. In a function that
does a traversal, like this function which adds 1 to each non-nil element of a tree,

(defun treel+ (tr)
(cond ((null tr) nil)

((atom tr) (1+ tr))
(t (cons (treel+ (car tr))

(treel+ (cdr tr))))))

the shape of a trace will therefore mirror the shape of the data structure being traversed:

> (trace treel+)
(treel+)
> (treel+ '((1 . 3) 5 . 7))
1 Enter TREE1+ ((1 . 3) 5 . 7)
2 Enter TREE1+ (1.3)
3 Enter TREE1+ 1
3 Exit TREE1+ 2
3 Enter TREE1+ 3
3 Exit TREE1+ 4

2 Exit TREE1+ (2 . 4)
2 Enter TREE1+ (5 . 7)
3 Enter TREE1+ 5
3 Exit TREE1+ 6
3 Enter TREE1+ 7
3 Exit TREE1+ 8

2 Exit TREE1+ (6 . 8)
1 Exit TREE1+ ((2 . 4) 6 . 8)
((2 . 4) 6 . 8)

To turn off tracing for foo, type (untrace foo); to turn off all tracing, type just
(untrace) .

DEBUGGING 289

A more flexible alternative to tracing is to insert diagnostic print statements in
your code. If the truth were known, this classic technique would probably turn out
to be used ten times as often as sophisticated debugging tools. Which is yet another
reason it's so useful to be able to redefine functions interactively.

A backtrace is a list of all the calls currently on the stack, made from a break
loop when an error has interrupted evaluation. If a trace is like saying, "Show me
what you're doing," a backtrace is like asking, "How did we get here?" In a way,
traces and backtraces are complementary. A trace will show calls to selected functions
everywhere in the calling tree of a program. A backtrace will show every function
call in a selected part of the calling tree (the path from the toplevel call to the place
where the error occurs).

In a typical implementation, we might get a backtrace by entering : backtrace
in a break loop, and it might look as follows:

> (t ree i+ ' ((1 . 3) 5 . A))
Error: A i s not a va l id argument to 1+.

Opt ions : : abor t , :backtrace
» .'backtrace
(1+ A)
(TREE1+ A)
(TREE1+ (5 . A))
(TREE1+ ((1 . 3) 5 . A))

Bugs that show up in a backtrace are easier to find. You just look back along
the chain of calls until you find the first one that should not have happened. Another
advantage of functional programming (Section 2.12) is that all bugs show up in the
backtrace. In purely functional code, everything that could have contributed to an
error must still be on the stack when the error occurs.

The amount of information in a backtrace varies from implementation to im
plementation. Some will display a complete history of all pending calls, with the
arguments; others will display next to nothing. Generally traces and backtraces of
interpreted code contain more information, which is one reason to delay compiling
your program until you're sure it works.

Traditionally one debugged code in the interpreter, and compiled it only once it
seemed to be working. But this view may be changing: at least two Common Lisp
implementations don't include interpreters.

When Nothing Happens

Not all bugs cause evaluation to be interrupted. Another common and possibly more
alarming situation is when Lisp seems to be ignoring you. Usually this is a sign that
your program is in an infinite loop.

If the loop occurs in iterative code, Lisp will happily continue forever. If it occurs
in recursive code (compiled without tail-recursion optimization), you will eventually
get an error message saying that Lisp has run out of stack space:

290 APPENDIX A

> (defun blow-stack () (1+ (blow-stack)))
BLOW-STACK
> (blow-stack)
Error : Stack overflow.

In either case, if you suspect an infinite loop, the solution is to interrupt execution,
then abort out of the resulting break loop.

Sometimes a program working on a very big problem will run out of stack space
without being in an infinite loop. This is rare though. Usually running out of stack is
a sign of a programming error.

In recursive functions it is a common error to forget the base case. In English
descriptions of recursion, we often omit it. Informally, we might say "ob j is a member
of 1st ifit is either the first element, oramemberof the rest of 1st." Strictly speaking,
we should also add that "ob j is not a member of 1st if it is empty." Otherwise what
we're describing is an infinite recursion.

In Common Lisp, car and cdr both return n i l if they are given n i l as an
argument:

> (car n i l)
NIL
> (cdr n i l)
NIL

So if we skipped the base case in the definition of member,

(defun our-member (obj 1s t) ; wrong
(i f (eql (car 1s t) obj)

1st
(our-member obj (cdr 1 s t))))

then it would recurse infinitely if the object we sought wasn't in the list. When we
reached the end of the list without finding it, the recursive call would be equivalent to:

(our-member obj n i l)

In a correct definition (page 16), the base case would stop the recursion at this point,
returning n i l . But in the mistaken definition, the function dutifully finds the car of
n i l , which is n i l , and compares that to the object we're looking for. Unless that
happens to be n i l , the function then continues looking in the cdr of n i l , which is
also nil—and the whole process starts over again.

If the cause of an infinite loop isn't obvious, you may be able to diagnose it by
looking at a trace or backtrace. Infinite loops fall into two categories. The easy ones
to find are ones that depend on program structure. A trace or backtrace would show
you immediately what was wrong with our-member.

The more difficult kind of infinite loops are the kind that happen because your
data structures are flawed. If you inadvertently create circular structure (page 199),
code that traverses it may get caught in an infinite loop. These bugs are difficult to find
because problems do not arise till later, in code that's not at fault. The best solution is

DEBUGGING 291

prevention, as described on page 199: avoid destructive operations until your program
is already working, and you are ready to tune it for efficiency.

If Lisp seems to be ignoring you, it could also be that it is waiting for you to finish
typing something. In most systems, hitting return has no effect until you have typed a
complete expression. The good thing about this approach is that it allows you to type
expressions that take up several lines. The bad thing is that if you inadvertently miss
a right parenthesis or a close-quote, Lisp will be waiting for you to finish typing an
expression that you think you have already finished:

> (format t "for example ~k~7, ' t h i s)

Here we have omitted the close-quote at the end of the format string. Hitting return
at this point has no effect, because Lisp thinks we are still in the middle of typing a
string.

In some implementations, you can go back to the previous line and insert the
close-quote. In systems that don't allow you to edit previous lines, the best solution
will usually be to interrupt execution, then abort from the resulting break loop back
to the toplevel.

No Value/Unbound

One of the most common complaints you'll hear from Lisp is that a symbol has no
value or is unbound. Several distinct problems show themselves in this way.

Local variables, like those established by l e t and def un, are valid only within
the body of the expression where they are created. So if we try to refer to such a
variable outside the l e t that creates it,

> (progn

(let ((x 10))

(format t "Here x = ~k.~7," x))

(format t "But now it's gone...""/,")

x)

Here x = 10.

But now it*s gone...
Error: X has no value.

we get an error. When Lisp complains that something has no value or is unbound, it
usually means that you inadvertently referred to a variable that didn't exist. Because
there was no local variable called x, Lisp assumed that we were referring to a global
variable or constant with that name. The error arose when Lisp tried to look up its
value and found that it hadn't been given one. Mistyping the name of a variable will
usually have the same result.

A similar problem happens if we inadvertently refer to a function as if it were a
variable. For example:

> defun foo (x) (+ x 1))

Error: DEFUN has no value.

292 APPENDIX A

This can seem puzzling the first time it happens: how can def un have no value? The
cause of the problem is that we have omitted the initial left parenthesis, causing Lisp
to interpret the symbol def un, which is all it will read, as a reference to a global
variable.

It may be that you really have forgotten to initialize some global variable. If you
don't give a second argument to def var, your global variable will be declared but not
initialized; that may be the root of the problem.

Unexpected Nils

When functions complain about being passed n i l as an argument, it is usually a sign
that something went wrong earlier in the program. Several built-in operators return
n i l to indicate failure. But since n i l is also a legitimate Lisp object, problems may
not arise till later, when some other part of your program tries to put this supposed
return value to use.

For example, this function to return the number of days in a month has a bug in
it; we have forgotten October:

(defun month-length (mon)
(case mon
((jan mar may jul aug dec) 31)
((apr jun sept nov) 30)
(feb (if (leap-year) 29 28))))

If we have another function intended to calculate the number of weeks in a month,

(defun month-weeks (mon) (/ (month-length mon) 7.0))

then the following can happen:

> (month-weeks ' oc t)
Error : NIL i s not a va l id argument to / .

The problem arises because none of the case clauses in month-length applies.
When this happens, case returns n i l . Then month-weeks, which thinks it is getting
a number, passes this value on to / , which complains.

Here at least the bug and its manifestation occur close together. Such bugs are
harder to find when they are far apart. To avoid this possibility, some dialects of Lisp
make it an error for control to run off the end of a case or cond. In Common Lisp, the
thing to do in a situation like this would be to use ecase, as described in Section 14.6.

Renaming

A particularly insidious kind of bug comes from renaming a function or variable in
some, but not all, of the places where it's used. For example, suppose we define the
following (inefficient) function to find the depth of nesting in a nested list:

DEBUGGING 293

(defun depth (x)
(i f (atom x)

1
(1+ (apply #'max (mapcar # 'depth x)))))

On testing the function, we find that it gives us an answer 1 too big:

> (depth ' ((a)))
3

The initial 1 should have been a 0. So we fix this, and while we're at it, give the
function a less ambiguous name:

(defun nest ing-depth (x)
(if (atom x)

0
(1+ (apply #'max (mapcar # 'depth x)))))

Yet when we test this function on the case above, it returns the same result:

> (nest ing-depth ' ((a)))
3

Didn't we just fix this function? We did, but the answer is not coming from the code
we fixed. We forgot to change the name in the recursive call. In the recursive case,
our new function still calls depth, which of course is still broken.

Keywords as Optional Parameters

If a function takes both keyword and optional parameters, it is a common error
unintentionally to supply a keyword as the optional parameter. For example, the
function read-f rom-str ing has the following parameter list:

(read-from-str ing string feoptional eof-error eof-value
&key start end preserve-whitespace)

With such a function you have to supply values for all the optional parameters in order
to pass keyword arguments. If you forget about the optional parameters, as in this
example,

> (read-from-str ing "abed" : s t a r t 2)
ABCD
4

then : s t a r t and 2 will be the values of the first two optional parameters. If we want
read to start after the second character, we should say instead:

> (read-from-str ing "abed" n i l n i l -.start 2)
CD
4

294 APPENDIX A

Misdeclarations
Chapter 13 explained how to make type declarations for variables and data structures.
By making a type declaration for a variable, you are promising that the variable will
only contain values of that type. The Lisp compiler will rely on this assumption when
generating code. For example, both arguments to this function are declared to be
double-floats,

(defun df* (a b)
(declare (double-f loat a b))
(* a b))

and the compiler is thereby entitled to hard-wire a floating-point multiply in the code
it generates for this function.

If df * is called with arguments that are not of the declared type, it might signal
an error, or simply return garbage. In one implementation, if we pass two fixnums we
get a hardware interrupt:

> (df* 2 3)
Error : I n t e r r u p t .

If you get a serious error like this, it is very likely to have been caused by a value that
was not of the declared type.

Warnings

Sometimes Lisp will complain about something without interrupting evaluation. Many
such warnings are false alarms. The most common kind may be those generated by
the compiler about undeclared or unused variables. For example, in the second call
to map-int (page 106), the variable x is not used. If you want the compiler to stop
informing you of this fact every time you compile your program, use an ignore
declaration:

(map-int #'(lambda (x)
(declare (ignore x))
(random 100))

10)

B: Lisp in Lisp

This appendix contains Lisp definitions of 58 of the most frequently used Common
Lisp operators. Because so much of Lisp is (or can be) written in Lisp, and because
Lisp programs are (or can be) quite short, this is a convenient way of explaining the
language.

This exercise also shows that, conceptually, Common Lisp not such a large lan
guage as it seems. Most Common Lisp operators are effectively library routines; the
set of operators that you need to write all the rest is quite small. Those defined in this
appendix require only:

apply aref backquote block car cdr ceiling char= cons defmacro

documentation eq error expt fdefinition function floor gensym

get-setf-expansion if imagpart labels length multiple-value-bind

nth-value quote realpart symbol-function tagbody type-of typep

= + - / < >

The code given here is presented as a way of explaining Common Lisp, not as
a way of implementing it. In a real implementation, these operators would be much
more efficient, and would do more error-checking. The operators themselves are
defined in alphabetic order, for easy reference. If you actually wanted to define a Lisp
this way, each macro definition would have to appear before any code that calls it.

(defun -abs (n)

(if (typep n 'complex)

(sqrt (+ (expt (realpart n) 2) (expt (imagpart n) 2)))

(if « n 0) (- n) n)))

(defun -adjoin (obj 1st ftrest args)

(if (apply #'member obj 1st args) 1st (cons obj 1st)))

295

296 APPENDIX B

(defmacro -and (ftrest args)
(cond ((nul l args) t)

((cdr args) ' (i f , (car args) (-and ,®(cdr args))))
(t (car args))))

(defun -append (^optional first ftrest rest)

(if (null rest)

first

(nconc (copy-list first) (apply #'-append rest))))

(defun -atom (x) (not (consp x)))

(defun -butlast (1st ^optional (n 1))

(nreverse (nthcdr n (reverse 1st))))

(defun -cadr (x) (car (cdr x)))

(defmacro -case (arg ftrest clauses)

(let ((g (gensym)))

'(let ((,g ,arg))

(cond ,Q(mapcar #'(lambda (cl)

(let ((k (car cl)))

'(,(cond ((member k '(t otherwise))

t)

((consp k)

'(member ,g ' ,k))

(t '(eql ,g \k)))

(progn ,0(cdr cl)))))

clauses)))))

(defun -cddr (x) (cdr (cdr x)))

(defun -complement (fn)

#*(lambda (ftrest args) (not (apply fn args))))

(defmacro -cond (ftrest args)

(if (null args)

nil

(let ((clause (car args)))

(if (cdr clause)

'(if , (car clause)

(progn ,<D(cdr clause))

(-cond ,Q(cdr args)))

'(or ,(car clause)

(-cond ,©(cdr args)))))))

LISP IN LISP

(defun -consp (x) (typep x 'cons))

(defun -constantly (x) #'(lambda (ftrest args) x))

(defun -copy-list (1st)

(labels ((cl (x)

(if (atom x)

x

(cons (car x)

(cl (cdr x))))))

(cons (car 1st)

(cl (cdr 1st)))))

(defun -copy-tree (tr)

(if (atom tr)

tr

(cons (-copy-tree (car tr))

(-copy-tree (cdr tr)))))

(defmacro -defun (name parms ftrest body)

(multiple-value-bind (dec doc bod) (analyze-body body)

'(progn

(setf (fdefinition ',name)

#'(lambda ,parms

,<Ddec

(block ,(if (atom name) name (second name

,<8bod))

(documentation ',name 'function)

,doc)

',name)))

(defun analyze-body (body &optional dec doc)

(let ((expr (car body)))

(cond ((and (consp expr) (eq (car expr) 'declare))

(analyze-body (cdr body) (cons expr dec) doc))

((and (stringp expr) (not doc) (cdr body))

(if dec

(values dec expr (cdr body))

(analyze-body (cdr body) dec expr)))

(t (values dec doc body)))))

298 APPENDIX B

; This definition is not strictly correct; see let.

(defmacro -do (binds (test ftrest result) ftrest body)

(let ((fn (gensym)))

'(block nil

(labels ((,fn ,(mapcar #>car binds)

(cond (,test ,<8result)

(t (tagbody ,®body)

(,fn ,®(mapcar #'third binds))))))

(,fn ,®(mapcar #'second binds))))))

(defmacro -dolist ((var 1st ftoptional result) ftrest body)

(let ((g (gensym)))

'(do ((,g ,1st (cdr ,g)))

((atom ,g) (let ((,var nil)) .result))

(let ((,var (car ,g)))

,<3body))))

(defun -eql (x y)

(typecase x

(character (and (typep y 'character) (char= x y)))

(number (and (eq (type-of x) (type-of y))

(= x y)))
(t (eq x y))))

(defun -evenp (x)

(typecase x

(integer (= 0 (mod x 2)))

(t (error "non-integer argument"))))

(defun -funcall (fn ftrest args) (apply fn args))

(defun -identity (x) x)

; This definition is not strictly correct: the expression

; (let ((ftkey 1) (ftoptional 2))) is legal, but its expansion

; is not.

(defmacro -let (parms ftrest body)

'((lambda ,(mapcar #'(lambda (x)

(if (atom x) x (car x)))

parms)

,«body)

,©(mapcar #'(lambda (x)

(if (atom x) nil (cadr x)))

parms)))

LISP IN LISP

(defun -list (ftrest elts) (copy-list elts))

(defun -listp (x) (or (consp x) (null x)))

(defun -mapcan (fn ftrest lsts)

(apply #'nconc (apply #'mapcar fn lsts)))

(defun -mapcar (fn ftrest lsts)

(cond ((member nil lsts) nil)

((null (cdr lsts))

(let ((1st (car lsts)))

(cons (funcall fn (car 1st))

(-mapcar fn (cdr 1st)))))

(t

(cons (apply fn (-mapcar #*car lsts))

(apply #'-mapcar fn

(-mapcar #'cdr lsts))))))

(defun -member (x 1st ftkey test test-not key)

(let ((fn (or test

(if test-not

(complement test-not))

#'eql)))

(member-if #'(lambda (y)

(funcall fn x y))

1st

:key key)))

(defun -member-if (fn 1st ftkey (key #'identity))

(cond ((atom 1st) nil)

((funcall fn (funcall key (car 1st))) 1st)

(t (-member-if fn (cdr 1st) :key key))))

(defun -mod (n m)

(nth-value 1 (floor n m)))

(defun -nconc (ftoptional 1st ftrest rest)

(if rest

(let ((rest-cone (apply #'-nconc rest)))

(if (consp 1st)

(progn (setf (cdr (last 1st)) rest-cone

1st)

rest-cone))

1st))

(defun -not (x) (eq x nil))

300 APPENDIX B

(defun -nreverse (seq)
(labels ((nrl (1st)

(let ((prev n i l))
(do ()

((null 1st) prev)
(psetf (cdr 1st) prev

prev 1st
1st (cdr 1st)))))

(nrv (vec)
(let* ((len (length vec))

(ilimit (truncate (/ len 2))))
(do ((i 0 (1+ i)>

(j (1- len) (1- j)))
((>= i ilimit) vec)

(rotatef (aref vec i) (aref vec j))))))
(if (typep seq 'vector)

(nrv seq)
(nrl seq))))

(defun -null (x) (eq x nil))

(defmacro -or (ftoptional f i r s t ftrest rest)
(if (null rest)

f i r s t
(let ((g (gensym)))

' (l e t ((,g , f i r s t))
(if ,g

»g
(-or ,©rest))<))))

; Not in CL, but needed in several definitions here.

(defun pair (1st)
(if (null 1st)

nil
(cons (cons (car 1st) (cadr 1st))

(pair (cddr 1st)))))

(defun -pairlis (keys vals ftoptional alist)
(unless (= (length keys) (length vals))
(error "mismatched lengths"))

(nconc (mapcar #'cons keys vals) alist))

LISP IN LISP

(defmacro -pop (place)

(multiple-value-bind (vars forms var set access)

(get-setf-expansion place)

(let ((g (gensym)))

'(let* (,<3(mapcar #'list vars forms)

(,g ,access)

(,(car var) (cdr ,g)))

(progl (car ,g)

,set)))))

(defmacro -progl (argl &rest args)

(let ((g (gensym)))

'(let ((,g ,argl))

, (3 args

,g)))

(defmacro -prog2 (argl arg2 ftrest args)

(let ((g (gensym)))

'(let ((,g (progn ,argl ,arg2)))

,«args

,g)))

(defmacro -progn (&rest args) '(let nil ,@args))

(defmacro -psetf (ftrest args)

(unless (evenp (length args))

(error "odd number of arguments"))

(let* ((pairs (pair args))

(syms (mapcar #'(lambda (x) (gensym))

pairs)))

'(let ,(mapcar #'list

syms

(mapcar #'cdr pairs))

(setf ,Q(mapcan #'list

(mapcar #'car pairs)

syms)))))

(defmacro -push (obj place)

(multiple-value-bind (vars forms var set access)

(get-setf-expansion place)

(let ((g (gensym)))

'(let* ((,g ,obj)

,@(mapcar #'list vars forms)

(,(car var) (cons ,g ,access)))

,set))))

302 APPENDIX B

(defun -rem (n m)
(nth-value 1 (truncate n m)))

(defmacro -rotatef (ferest args)
'(psetf ,Q(mapcan #,list

args
(append (cdr args)

(list (car args))))))

(defun -second (x) (cadr x))

(defmacro -setf (forest args)
(if (null args)

nil
'(setf2 ,®args)))

(defmacro setf2 (place val ftrest args)
(multiple-value-bind (vars forms var set)

(get-setf-expansion place)
'(progn

(let* (,Q(mapcar #,list vars forms)
(,(car var) ,val))

,set)
,fl(if args '((setf2 ,©args)) nil))))

(defun -signum (n)
(if (zerop n) 0 (/ n (abs n))))

(defun -stringp (x) (typep x 'string))

(defun -tailp (x y)
(or (eql x y)

(and (consp y) (-tailp x (cdr y)))))

(defun -third (x) (car (cdr (cdr x))))

(defun -truncate (n &optional (d 1))
(if (> n 0) (floor n d) (ceiling n d)))

(defmacro -typecase (arg ftrest clauses)
(let ((g (gensym)))
'(let ((,g ,arg))

(cond ,<3(mapcar #' (lambda (cl)
'((typep ,g ',(car cl))
(progn ,Q(cdr cl))))

clauses)))))

LISP IN LISP 303

(defmacro -unless (arg &rest body)
'(if (not ,arg)

(progn ,<9body)))

(defmacro -when (arg &rest body)
'(if ,arg (progn ,@body)))

(defun -1+ (x) (+ x 1))

(defun -1- (x) (- x 1))

(defun ->= (first ftrest rest)
(or (null rest)

(and (or (> first (car rest)) (= first (car rest)))
(apply #'->= rest))))

C: Changes to Common Lisp

ANSI Common Lisp differs substantially from the Common Lisp defined in 1984 by
the first edition of Guy Steele's Common Lisp: the Language. It also differs, though
less so, from the language described in the second (1990) edition. This appendix
summarizes some of the more significant changes. Changes since 1990 are listed
separately in the last section.

Major Additions
1. The Common Lisp Object System, or CLOS, has become part of the language.

2. The loop macro now implements an embedded language with infix syntax.

3. Common Lisp now includes a group of new operators, collectively called the
condition system, for signalling and handling errors and other conditions.

4. Common Lisp now provides explicit support for, and control over, pretty-
printing.

Individual Additions
1. The following individual operators have been added:

complement nth-value
declaim pr in t -unreadable-objec t
defpackage readtable-case
delete-package row-major-aref
des t ruc tur ing-b ind stream-external-format
f d e f i n i t i o n with-compilat ion-uni t
f i l e - s t r i n g - l e n g t h w i t h - h a s h - t a b l e - i t e r a t o r
function-lambda-expression wi th-package- i te ra tor

304

CHANGES TO COMMON LISP 305

load-time-value with-standard-io-syntax

map-into

2. along with the following individual global variables:

debugger-hook *read-eval* *print-readably*

Functions
1. The idea of a function name has been generalized to include expressions of

the form (se t f /) . Such expressions are now accepted by any operator or
declaration that expects a function name. The new function fde f i n i t i on is
like symbol-function, but takes a function name in the more general sense.

2. The type function no longer includes fboundp symbols and lambda expres
sions. Symbols (but not lambda expressions) can still be used where functional
arguments are expected. Lambda expressions can now be coerced to func
tions.

3. Symbols used as names of keyword parameters no longer have to be keywords.
(Note that symbols not in the keyword package have to be quoted when used
to identify arguments in calls.)

4. Rest parameters are not guaranteed to be freshly consed. Thus it is not safe to
modify them destructively.

5. A local function defined with f l e t or l abeIs , or an expansion function defined
by def macro, macrolet, or def setf, is implicitly enclosed in a block whose
name is the name of whatever is being defined.

6. A function that has an interpreted definition in a non-null lexical environment
(e.g. one defined at the toplevel by a def un within a l e t) cannot be compiled.

Macros
1. Compiler macros and symbol macros have been introduced, along with asso

ciated operators.

2. The expansion functions of macros are now specified to be defined in the
environment where the call to def macro occurs. Thus in ANSI Common Lisp
it is possible for the code that generates macro expansions to refer to local
variables:

(l e t ((op ' c a r))
(defmacro pseudocar (1st)

'(,op ,1st)))

In 1984, expansion functions were supposed to be defined in the null environ
ment (i.e. the toplevel).

3. Macro calls are guaranteed not to be re-expanded in compiled code.

4. Macro calls can now be dotted lists.

5. Macros can no longer expand into declares.

306 APPENDIX C

Evaluation and Compilation
1. The eval-when special operator has been redefined, and all the original key

words are now deprecated.

2. The function compile-f i le now takes :p r in t and .-verbose arguments.
New variables * compile-print* and*compile-verbose* hold the defaults.

3. The new variables *compile-f ile-pathname* and *compile-f i l e - t r u e -
name* are bound during the evaluation of a call to compile-f i le . Likewise
•load-pathname* and *load-truename* during a load.

4. The dynamic-extent declaration has been added.

5. The debug compilation parameter has been added.

6. The compiler- le t special operator has been deleted.

7. The #, read-macro has been deleted.

8. The global *break-on-warnings* has been deleted; its replacement is the
more general *break-on-signals*.

Side-effects
1. A se t f method can now have multiple store variables.

2. The ways in which many destructive functions modify their arguments are now
more explicitly specified. For example, most operators that could modify lists
are not merely allowed to do so, but specified to do so. Such functions could
now be called for effects rather than values.

3. It is now explicitly forbidden to use mapping functions (and macros like
d o l i s t) to modify the sequences they are traversing.

Symbols
1. The new global variable *gensym-counter* holds an integer used to make the

print-names of gensyms. In 1984, the gensym counter could be reset implicitly
by giving an integer as the argument to gensym; this practice is now deprecated.

2. It is now an error to modify a string used as the name of symbol.

3. The function documentation has become a generic function.

Lists
1. The functions assoc-if , assoc- i f -not , rassoc- i f , and rassoc- i f -no t ,

and reduce now take a :key argument.

2. The function l a s t now takes an optional second argument indicating the length
of the tail to return.

3. With the addition of complement, use of - i f - n o t functions and : t e s t - no t
keyword arguments is now deprecated.

CHANGES TO COMMON LISP 307

Arrays
1. New functions have been added to allow programs to ask about type-upgrading

of elements of arrays and complex numbers.

2. Array indices are now specified to be fixnums.

Strings and Characters
1. The type s t r ing -cha r has been deleted. The type s t r i n g is no longer identi

cal to (vector s t r i ng -cha r) . The type character is divided into two new
subtypes, base-char and extended-char. The type s t r i n g has a new sub
type base-s t r ing , which in turn has a new subtype s imple-base-s t r ing .

2. Several functions that create strings now take an : element-type argument.

3. The font and bits attributes of characters have been discarded, along with all
the associated functions and constants. The only remaining character attribute
defined by Common Lisp is the code.

4. Most string functions can coerce the same kinds of arguments as s t r i ng . So
(s tr ing= >x 'x) now should return t .

Structures
1. It is no longer necessary to specify any slots in a call to def s t ruc t .

2. The consequences of redefining a structure—that is, calling def s t r u c t twice
with the same structure name—are undefined.

Hash Tables
1. The function equalp now applies to hash tables.

2. New accessors have been added to allow programs to refer to the properties of
hash tables: hash- tab le - rehash-s ize , hash- table- rehash- threshold ,
hash- tab le -s ize , and h a s h - t a b l e - t e s t .

I/O
1. The concept of logical pathnames was introduced, along with associated oper

ators.

2. Several new types of stream have been introduced, with associated predicates
and accessors.

3. The ~_, ~W, and "I format directives have been added. The format directives
~D,~B,~0,~X, and ~R all take an extra argument.

4. The functions wri te and w r i t e - t o - s t r i n g take five new keyword argu
ments.

5. There is a new read-macro, #P, for pathnames.

6. The new variable *pr int - readably* can be used to insist that output be
readable.

308 APPENDIX C

Numbers
1. Fixnums are now at least 16 bits.

2. There are eight new constants marking the limits of normalized floats.

3. The type r e a l has been added; it is a subtype of number and a supertype of
r a t i o n a l and f loa t .

Packages
1. The conventional way to define packages in source files has been changed.

Toplevel calls to package-related functions are no longer evaluated by the
compiler. Users are supposed to use the new def package macro instead. The
old in-package function has been replaced by a macro with the same name.
The new macro does not evaluate its argument, or take a : use argument, or
implicitly create packages.

2. The packages l i s p and user have been renamed common-lisp and common-
l i sp -u se r . New packages do not implicitly use common-lisp as they did
l i s p .

3. The names of all built-in variables, functions, macros, and special operators
must be owned by common-lisp. It is an error to redefine, rebind, trace, or
make declarations for any built-in operator.

Types
1. The eql type specifier has been added.

2. The type common has been deleted, with the function commonp.

Changes Since 1990
1. The following operators have been added:

a l l oca t e - in s t ance ensu re -d i r ec to r i e s - ex i s t
array-displacement lambda
constant ly read-sequence
define-symbol-macro write-sequence

2. The following operators and variables have been deleted:

applyhook function-information

applyhook get-setf-method

augment-environment generic-flet

declare generic-function

enclose generic-labels

evalhook parse-macro

evalhook variable-information

declaration-information with-added-methods

define-declaration

CHANGES TO COMMON LISP 309

Instead of get - s e t f -method, use get-se t f -expansion, the replacement
for get-setf-method-mult iple-value. Also, declare is still used—it is
just no longer considered to be an operator.

3. The following four operators have been renamed

define-setf-[method —•*• expander]
get-setf-[method-mult iple-value —• expansion]
special-[f orm —• operator]-p
simple-condit ion-f ormat-[s t r ing —• control]

along with the following two types (new in 1990):

base-[character —* char]
extended-[character —• char]

4. The module facility, which was deleted in 1990, has been reinstated, but its use
is now deprecated.

5. It is possible to use a values expression as the first argument to setf.

6. The ANSI standard is more specific about which functions accept dotted lists.
For example, it is now specified that the arguments to nconc can be dotted
lists. (Strangely, the arguments to append must be proper lists, so nconc and
append no longer take the same arguments.)

7. It's definitely no longer possible to coerce an integer to a character. It is now
possible to coerce (setf/) to a function.

8. The restriction that an argument to compile had to be defined in the null lexical
environment has been relaxed; its environment may include local macro or
symbol-macro definitions, or declarations. The first argument may now be a
compiled function.

9. The functions gentemp and se t are now deprecated.

10. The symbol type can always be omitted in a type declaration. It is thus an
error to define a type whose name is that of a declaration, or vice versa.

11. The new ignorable declaration can be used to declare that no warning should
be issued, whether a variable is used or not.

12. The constant a r r a y - t o t a l - s i z e - l i m i t is now specified to be a fixnum.
Thus an argument to row-major-aref can always be declared a fixnum.

13. Instead of a : p r i n t -function, a structure defined with def s t r u c t can now
have a -.print-object, which takes only the first two arguments.

14. There is a new type, boolean, whose two members are n i l and t .

D: Language Reference

This appendix describes every operator in ANSI Common Lisp. The descriptions
follow several conventions:

SYNTAX

Entries for functions are lists beginning with the function name, followed by an
indication of the parameter list. Entries for special operators and macros are regular
expressions indicating the form of a valid call.

In a regular expression, something followed by an asterisk1 indicates zero or
more of them: (a*) could be () , or (a) , or (a a) , and so on. Something in square
brackets indicates zero or one of them: (a [b] c) could be (a c) or (a b c).
Curly brackets are sometimes used for grouping: ({a b}*) could be () or (a b), or
(a b a b) , and so on. A vertical bar indicates a choice between several alternatives:
(a {1 | 2} b) could be (a 1 b) or (a 2 b) .

PARAMETER NAMES

The parameter names correspond to restrictions on the arguments. If a parameter has
the name of a type, then the corresponding argument must be of that type. Additional
implications of parameter names are listed in the following table.

Arguments to macros and special operators are not evaluated unless the description
says so explicitly. If such an argument is not evaluated, type restrictions implied by
its name apply to the argument itself; if it is evaluated, they apply to its value. If a
macro argument is evaluated, it is evaluated in the environment where the macro call
appears, unless the description explicitly says otherwise.

1 An asterisk, *, is not to be confused with a star, *.

310

LANGUAGE REFERENCE 311

alist

body

declaration
environment

f
fname

format

i

list

object
package

path

place
plist

pprint-dispatch
predicate
prolist
proseq
r
tree

type

must be an assoc-list, which is a proper list whose elements, if any,
are of the form (key . value).
indicates the arguments that could come after the parameter
list in a def tin expression: either declaration* [string] expres
sion*, or [string] declaration* expression*. So an entry like
(def un fname parameters . body) indicates that the syntax of
a defun expression could be (defun fname parameters dec
laration* [string] expression*), or (defun fname parameters
[string] declaration* expression*). If the string is followed by
at least one expression, it is interpreted as a documentation string,
must be a complex number,
must be a list whose car is declare .
indicates an object representing a lexical environment. (You can't
create such objects directly, but Lisp uses them internally.) The
symbol n i l always represents the global environment,
must be a float.
must be a function name: either a symbol or a list (se t f s), where
s is a symbol.
can be either a string that could be the second argument to format,
or a function that takes a stream and some optional arguments and
(presumably) writes something to the stream,
must be an integer.
can be a list of any type. Whether or not a list can be circular
depends on the context. Functions that take lists as arguments can
take cdr-circular lists if and only if their purpose never requires
them to find the end of the list. So nth can take cdr-circular lists,
but find cannot. A parameter called list can always be car-circular,
must be a non-negative integer,
can be of any type.
must be a package, a string that is the name of a package, or a
symbol whose name is the name of a package,
can be a pathname, a stream associated with a file (in which case it
indicates the pathname used to open the stream), or a string,
must be an expression that could be the first argument to setf.
must be a property list, which is a proper list with an even number
of elements.
must be a pprint dispatch table (or possibly n i l) .
must be a function,
must be a proper list.
must be a proper sequence—that is, a vector or a proper list,
must be a real.
imposes no type restriction—everything is a tree. But cannot be a
car- or cdr-circular list,
must be a type designator.

312 APPENDIX D

DEFAULTS

Certain optional parameters always have the same default. An optional stream pa
rameter always defaults to * s tandard- input* or *standard-output*, depending
on whether the operator in question is for use on input or output streams. An op
tional parameter called package always defaults to *package*; one called readtable
always defaults to *readtable*; and one called pprint-dispatch always defaults to
• p r i n t - p p r i n t - d i spat ch*.

COMPARISON

Many functions that compare sequence elements take the keyword arguments key,
t e s t , t e s t - n o t , f rom-end, s t a r t , or end. Their use is the same in every case; see
page 64. The key, t e s t and t e s t - n o t arguments must be functions, and the s t a r t
and end arguments must be non-negative integers. In the descriptions of functions
that take such keyword arguments, words like "match", "member", and "element" are
to be understood as modified by the presence of such arguments.

In any function that does comparisons on sequence elements, it is also to be
assumed that the default test for equality is eql, unless stated otherwise.

STRUCTURE

If an operator returns structure (e.g. lists), it should be understood that the return value
can share structure with objects passed as arguments, unless the description says that
the return value is newly created. However, only parameters shown in angle brackets
{(list)) can actually be modified by the call. If two functions are listed together, the
second is a destructive version of the first.

EVALUATION AND COMPILATION 313

Evaluation and Compilation

(compile fname ^opt ional function) Function
Iffunction is not provided and fname is the name of an uncompiled function or
macro, then replaces that function or macro with a compiled version, returning
fname. (The lexical environment in which the function or macro is defined
should not differ from the global environment except by having local macro
or symbol-macro definitions, or declarations.) If function (which may be
a function or lambda expression) is provided, then coerces it to a function,
compiles it, and names it fname, Tttummg fname. The fname may also be n i l ,
in which case the compiled function is returned. Returns two additional values:
a second true iff compilation generated errors or warnings; and a third true iff
compilation generated errors or warnings other than style warnings.

(compiler-macro-function fname ftoptional environment) Function
Returns the compiler macro function whose name is fname in environment,
or n i l if there isn't one. A compiler macro function is a function of two
arguments: the entire call, and the environment in which it occurs. Settable.

(constantp expression ftoptional environment) Function
Returns true if expression is the name of a constant, or a list whose car is
quote, or an object that is neither a symbol nor a cons. May also return true
for other expressions that the implementation is able to determine are constant.

(declaim declaration-spec) Macro
Like proclaim, but top-level calls are processed by the compiler, and the
declaration-spec is not evaluated.

(declare declaration-spec*)
Not an operator, but resembles one in that an expression whose car is declare
may appear at the beginning of a body of code. Such an expression makes
the declarations described by the declaration-specs (not evaluated) apply to all
the code in the environment in which the declare appears. The following
declarations are allowed: dynamic-extent, ftype, ignorable, ignore,
in l ine , no t in l ine , optimize, specia l , type.

(define-compiler-macro fname parameters . body) Macro
Like def macro, but defines a compiler macro. Compiler macros are like nor
mal macros, but are expanded only by the compiler, and are expanded before
normal macros. Usually, fname will be the name of an existing function or
macro, and the compiler macro will be defined to optimize certain calls and re
turn the rest unchanged. (It would cause an error if a normal macro returned the
original expression.) The documentation string becomes the compiler-macro
documentation of fname.

(define-symbol-macro symbol expression) Macro
Causes symbol to be treated as a macro call, so long as there is not already
a special variable called symbol. Its expansion will be expression. If symbol
occurs as if it were a variable in a call to setq, the se tq will behave like a
setf; likewise for mul t ip le-va lue-se tq , which will behave like a se t f of
values.

314 APPENDIX D

(defmacro symbol parameters . body) Macro
Globally defines a macro named symbol. In most cases, calls of the form
(symbol a\ .. .an) can be understood as being replaced by the value returned
by ((lambda parameters . body) a\ .. .an) before being evaluated. In the
general case, the parameters are associated with the arguments in the macro call
as if by des t ructur ing-bind; and they may contain an fewhole parameter,
which will be bound to the entire macro call, and an ̂ environment parameter,
which will be bound to the environment in which the macro call occurs. The
documentation" string becomes the function documentation of symbol.

(eval expression) Function
Evaluates expression in the global environment and returns its value(s).

(eval-when (case*) expression*) Special Operator
If one of the cases applies, the expressions are evaluated in order and the value(s)
of the last are returned; otherwise returns n i l . The case : compile-toplevel
applies when the eval-when expression is a top-level form in a file being com
piled. The case : load- top leve l applies when the eval-when expression
is a top-level form in a compiled file being loaded. The case : execute
applies when the eval-when expression would be evaluated anyway (so us
ing only : execute makes eval-when equivalent to progn). The symbols
compile, load, and eval are deprecated synonyms for : compile-toplevel,
: load- toplevel , and :execute.

(lambda parameters . body) Macro
Equivalent to (function (lambda parameters . body)).

(load-t ime-value expression &optional constant) Special Operator
Equivalent to (quote vol), where val is the value returned by expression when
a file of compiled code containing the load-t ime-value expression is loaded.
If constant (not evaluated) is t , indicates that the value is never going to be
modified.

(loca l ly declaration* expression*) Special Operator
An expression of the form (loca l ly e\ .. .en) is equivalent to (l e t ()
e\ .. ,en), except that if the call to l oca l l y is a top-level form, so are the
expressions.

(macroexpand expression &optional environment) Function
Returns the expansion returned by calling macroexpand-1 repeatedly, starting
with expression, until the result is no longer a macro call. Returns a second
value true iff the return value differs from expression.

(macroexpand-1 expression feoptional environment) Function
If expression is a macro call, does one round of expansion, otherwise returns
expression. Works by calling *macroexpand-hook*, whose initial value is
f uncal l , on three arguments: the corresponding macro function, expression,
and environment. So ordinarily the expansion is generated by calling the macro
function on the arguments passed to macroexpand-1. Returns a second value
true iff the return value differs from expression.

TYPES AND CLASSES 315

(macro-function symbol ftoptional environment) Function
Returns the macro function whose name is fname in environment, or n i l if
there isn't one. A macro function is a function of two arguments: the entire
call, and the environment in which it occurs. Settable.

(proclaim declaration-spec) Function
Globally makes the declaration described by declaration-spec. The follow
ing declarations are allowed: dec lara t ion , ftype, i n l i ne , no t in l ine ,
optimize, specia l , type.

(spec ia l -opera tor -p symbol) Function
Returns true iff symbol is the name of a special operator.

(symbol-macrolet {{symbol expression)*) Special Operator
declaration* expression*)

Evaluates its body with each symbol defined locally to be the corresponding
symbol-macro, as if by def ine-symbol-macro.

(the type expression) Special Operator
Returns the value(s) of expression, and declares that the value(s) will be of type
type. (See the values type specifier, page 398.) The number of declarations
and the number of values can differ: leftover declarations have to be true of
n i l ; leftover values have no type declared for them.

(quote object) Special Operator
Returns its argument without evaluating it.

Types and Classes

(coerce object type) Function
Returns an equivalent object of type type. If the object is already of that type,
just returns it. Otherwise, if object is a sequence and type denotes a type of
sequence that can contain the elements of object, then the result is a sequence of
that type with the same elements as object. If object is a string of one character
or a symbol whose name is a string of one character, and type is character ,
returns that character. If object is a real and type denotes a type of floating-point
number, the result will be a floating-point approximation of object. If object
is a function name (a symbol, or (se t f /) , Or a lambda expression), and type
is function, then the result is the function it denotes; in the latter case, the
function will be defined in the global environment, not the environment where
the call to coerce occurs.

(deftype name parameters . body) Macro
Just like def macro, except that a "call" to name is used as a type designator
(e.g. within a declare) rather than an expression. The documentation string
becomes the type documentation of name.

(subtypep typel type! &optional environment) Function
Returns two values; the first is true iff typel can be proved to be a subtype of
typel, the second iff the relation between the two types is known with certainty.

316 APPENDIX D

(type-error-datum condition) Function
Returns the object that caused the type-error condition.

(type-error-expected- type condition) Function
Returns the type that the offending object was supposed to have had in the
type-error condition.

(type-of object) Function
Returns a type specifier for a type of which object is a member.

(typep object type fcoptional environment) Function
Returns true iff object is of type type.

Control and Data Flow

(and expression*) Macro
Evaluates the expressions in order, returning n i l immediately if one evaluates
to n i l , or if they all return true, the value(s) of the last. Returns t if given no
arguments.

(apply function ftrest args) Function
Calls function on args, of which there must be at least one. The last org must
be a list. The arguments to the function consist of each org up to the last, plus
each element of the last; that is, the argument list is composed as if by l i s t * .
The function can also be a symbol, in which case its global function definition
is used.

(block symbol expression*) Special Operator
Evaluates its body within a block whose name is symbol (not evaluated). Used
with r e tu rn - f rom.

(case object (key expression*)* Macro
[({t | otherwise} expression*)])

Evaluates object, then looks at the remaining clauses in order; if the object is
eql to or a member of the key (not evaluated) of some clause, or the clause
begins with t or otherwise, then evaluates the following expressions and
returns the value(s) of the last. Returns n i l if no key matches, or the matching
key has no expressions. The symbols t and otherwise may not appear as
keys, but you can get the same effect by using (t) and (otherwise).

(catch tag expression*) Special Operator
Evaluates its body with a pending catch tag whose name is the value of tag.
Used with throw.

(cease object (key expression*)*) Macro
Evaluates object, then looks at the remaining clauses in order; if the object is
eql to or a member of the key (not evaluated) of some clause, then evaluates
the following expressions and returns the value(s) of the last. Returns n i l if
the matching key has no expressions. If no key matches, signals a correctable
type-error. The symbols t and otherwise may not appear as keys, but you
can get the same effect by using (t) and (otherwise).

CONTROL AND DATA FLOW 317

(compiled-function-p object) Function
Returns true iff object is a compiled function.

(complement predicate) Function
Returns a function of one argument that returns true where predicate (which
should also take one argument) returns false, and false where predicate returns
true.

(cond ((test expression*)*)) Macro
Evaluates tests until one returns true. If that test has no corresponding ex
pressions, returns the value of the test. Otherwise evaluates the expressions in
order, returning the value(s) of the last. If no test returns true, returns n i l .

(constant ly object) Function
Returns a function that takes any number of arguments and returns object.

(ctypecase object (type expression*)*) Macro
Evaluates object, then looks at the remaining clauses in order; if the object is of
some type (not evaluated), then evaluates the following expressions and returns
the value(s) of the last. Returns n i l if the matching type has no expressions.
If no type matches, signals a correctable type-error.

(def const ant symbol expression [string]) Macro
Defines symbol to be a global constant with the value of expression. No local
or global variable may have the same name. The expression may be evaluated
at compile-time. The string, if present, becomes the va r i ab le documentation
of symbol. Returns symbol.

(def ine-modif y-macro name parameters symbol [string]) Macro
An expression of the form (def ine-modif y-macro m (p\ .. ,pn) f) de
fines a new macro m, such that a call of the form (m place a\ .. .an) will
cause place to be set to (f vol a\.. .an), where val represents the value of
place. The parameters may also include rest and optional parameters. The
string, if present, becomes the documentation of the new macro.

(define-setf-expander reader parameters . body) Macro
Defines the way calls of the form (se t f (reader a\ ...an) val) will be ex
panded; when get -se t f -expansion is called on such an expression, it will
return the (five) values returned by the expressions. The string, if present,
becomes the se t f documentation of reader.

(defparameter symbol expression [string]) Macro
Gives the global variable symbol the value of expression. The string, if present,
becomes the var iab le documentation of symbol. Returns symbol.

(defsetf reader writer [string]) Macro
Short form: Causes calls of the form (se t f (reader a\ .. ,an) val) to be
expanded into (writer a\ .. .an val). The reader and writer writer must be
symbols, and are not evaluated. The string, if present, becomes the se t f
documentation of reader.

318 APPENDIX D

(def setf reader parameters (var*) . body) Macro
Long form: Causes calls of the form (se t f (reader a\ .. .an) vat) to be
expanded into the expression generated by the evaluation of the body of the
def setf, as if it were a def macro. The reader must be a symbol (not evalu
ated) that is the name of a function, or a macro that evaluates all its arguments.
The parameters are the parameters of reader, and the vars will represent the
value(s) of val. The string, if present, becomes the setf documentation of
reader.
In order to maintain the principle that se t f returns the new value of its first
argument, the expansion generated by a def se t f should return that value.

(defun fname parameters . body) Macro
Globally defines fname to be the corresponding function, defined in the lexical
environment where the defun expression occurs. The body of the function is
implicitly enclosed in a block named fiiame iffname is a symbol, or/'if fname
is a list of the form (se t f /) . The string, if present, becomes the function
documentation of fname.

(defvar symbol [expression [string]]) Macro
Gives the global variable symbol the value of expression, if expression is
provided and the variable does not already have a value. The string, if present,
becomes the va r iab le documentation of symbol. Returns symbol.

(des t ruc tur ing-bind variables tree declaration* expression*) Macro
Evaluates its body with variables in variables (a tree whose interior nodes are
parameter lists) bound to the corresponding elements of the value of tree. The
value of tree must match the shape of variables.

(ecase object (key expression*)*) Macro
Like cease, but signals a non-correctable type-error if no key matches.

(eq object 1 object!) Function
Returns true iff object1 and object2 are identical.

(eql object 1 object!) Function
Returns true iff object! and object! are eq, or the same character, or numbers
that would look the same when printed.

(equal object 1 object!) Function
Returns true iff object! and object! are eql; or are conses whose cars and
cdrs are equal; or are strings or bit-vectors of the same length (observing fill
pointers) whose elements are eql; or are pathnames whose components are
equivalent. May not terminate for circular arguments.

(equalp object! object!) Function
Returns true iff object! and object! are equal, char-equal, or =; or are conses
whose cars and cdrs are equalp; or are arrays with the same dimensions whose
active elements are equalp; or are structures of the same type whose elements
are equalp; or are hash tables with the same test function and number of
entries whose keys (as determined by the test function) are all associated with
equalp values. Reasonable to assume that it may not terminate for circular
arguments.

CONTROL AND DATA FLOW 319

(etypecase object (key expression*)*) Macro
Like etypecase, but signals a non-correctable type-error if no key matches.

(every predicate proseq ftrest proseqs) Function
If the shortest proseq has length n, returns true iff predicate, which must be a
function of as many arguments as there are proseqs, returns true when applied
to all the first elements, then all the second elements, . . . then all the nth
elements. Stops as soon as predicate returns n i l , returning n i l .

(fboundp fname) Function
Returns true iff fname is the name of a global function or macro.

(fdef in i t ion fname) Function
Returns the global function whose name is fname. Settable.

(f l e t ({.fname parameters . body)*) Special Operator
declaration * expression*)

Evaluates its body with each fname denned locally to be the corresponding
function. Like l abe l s , but the local functions are visible only in the body;
they may not call one another (and so cannot be recursive).

(fmakunbound fname) Function
Removes the global function or macro definition for fname. Causes an error if
there isn't one. Returns fname.

(funcall function ftrest args) Function
Calls function on args. The function can also be a symbol, in which case its
global function definition is used.

(function name) Special Operator
Returns the function whose name is name, which can be either a symbol, a list
of the form (setf /) , or a lambda expression. If/ is a built-in operator, it is
implementation-dependent whether or not there is a function called (se t f /) .

(function-lambda-expression function) Function
Intended to return the lambda expression defining function, but can always
return n i l . Returns two additional values: the second, if n i l , says that
function is defined in the null lexical environment; an implementation can use
the third to express function's name.

(functionp object) Function
Returns true iff object is a function.

(labels ((fname parameters . body)*) Special Operator
declaration * expression *)

Evaluates its body with each fname defined locally to be the corresponding
function. Like f l e t , but the local functions are visible within the entire
l abe l s expression; they may call one another (and so can be recursive).

320 APPENDIX D

(ge t -se t f -expans ion place ftoptional environment) Function
Returns five values vi . . .vs that determine the expansion of (se t f place val)
in the environment. The five values will be: a list of unique variable names
(gensyms); a list of an equal number of values that should be assigned to them;
a list of store variables to hold the value(s) of place; an expression that will
perform the assignment designated by the setf, and can refer to variables from
vi and V3', and an expression that will retrieve the original value of place, and
can refer to variables from v\.

(go tag) Special Operator
Within a tagbody expression, transfers control to the point following the
nearest lexically enclosing eql tag.

(i d e n t i t y object) Function
Returns object.

(i f test then [else]) Special Operator
Evaluates the test expression; if it returns true, evaluates and returns the value(s)
of the then expression; otherwise evaluates and returns the value(s) of the else
expression, or n i l if there is no else expression.

(l e t {{symbol \ {symbol [value])}*) Special Operator
declaration* expression*)
Evaluates its body with each symbol bound to the value of the corresponding
value expression, or n i l if no value is given.

(l e t * ({symbol \ (.symbol [value])}*) Special Operator
declaration * expression *)

Like l e t , except that value expressions may refer to previous symbols.

(macrolet ((symbol parameters . body)*) Special Operator
declaration* expression*)

Evaluates its body with each symbol defined locally to be the corresponding
macro. The expansion functions are defined in the lexical environment where
the macrolet expression occurs. Like f l e t , the local macros may not call
one another.

(mult iple-value-bind (symbol*) expressionl Macro
declaration * expression *)

Evaluates expressionl, then evaluates its body with each of the symbols (not
evaluated) bound to the corresponding return value. If there are too few return
values, the leftover variables are bound to n i l ; if there are too many, the extra
values are ignored.

(mul t ip l e -va lue -ca l l function expression*) Special Operator
Calls function (evaluated) with arguments consisting of all the values returned
by all the expressions.

(m u l t i p l e - v a l u e - l i s t expression) Macro
Returns a list of the values returned by expression.

CONTROL AND DATA FLOW 321

(mult iple-value-progl expression! expression*) Special Operator
Evaluates its arguments in order, returning the value(s) of the first.

(mul t ip le-value-se tq (symbol*) expression) Macro
Assigns the symbols (not evaluated) the values returned by expression. If there
are too few return values, the leftover variables are bound to n i l ; if there are
too many, the extra values are ignored.

(not object) Function
Returns true when object is n i l .

(notany predicate proseq ftrest proseqs) Function
An expression of the form (notany predicate s\ .. .sn) is equivalent to (not
(some predicate s\ .. .sn)).

(notevery predicate proseq ftrest proseqs) Function
An expression of the form (notevery predicate s\ .. .sn) is equivalent to
(not (every predicate s\ .. .sn)).

(nth-value n expression) Macro
Returns the nth (evaluated) value returned by expression. Numbering starts at
0. Returns n i l if expression returns less than n+\ values.

(or expression*) Macro
Evaluates the expressions in order; as soon as one returns true, returns its value.
Can return multiple values from the last expression, but only the last. Returns
n i l if no expression returns true.

(prog ({symbol | (symbol [value])}*) Macro
declaration* {tag | expression}*)

Evaluates its body with each symbol bound to the value of the corresponding
value expression, or n i l if no value is given. The body is enclosed in an
implicit tagbody and an implicit block named n i l , so the expressions can
include calls to go, re turn , and re tu rn - f rom.

(prog* ({symbol | (symbol [value])}*) Macro
declaration* {tag \ expression}*)

Like prog, except that value expressions may refer to previous symbols.

(progl expressionl expression*) Macro
Evaluates its arguments in order, returning the value of the first.

(prog2 expressionl expression! expression*) Macro
Evaluates its arguments in order, returning the value of the second.

(progn expression*) Special Operator
Evaluates its arguments in order, returning the value(s) of the last.

(progv symbols values expression*) Special Operator
Evaluates its body with each variable in symbols (which must evaluate to a
list of symbols) dynamically bound to the corresponding element of values
(which must evaluate to a list). If there are too many variables, it will cause an
error to refer to one of the leftover ones in the expressions', if there are too few,
the extra values are ignored.

322 APPENDIX D

(psetf {place value}*) Macro
Like setf, but if a value expression refers to one of the preceding places, it
will get the previous value. That is, (psetf x y y x) would exchange the
values of x and y.

(psetq {symbol value}*) Macro
Like setq, but if a value expression refers to a variable that was one of the
preceding symbols, it will get the previous value. That is, (psetq x y y x)
would exchange the values of x and y.

(re turn expression) Macro
Equivalent to (re tu rn- f rom n i l expression). Many macros (e.g. do) im
plicitly enclose their bodies in blocks named n i l .

(re tu rn- f rom symbol expression) Special Operator
Returns the value(s) of expression from the nearest lexically enclosing block
whose name is symbol (not evaluated). Causes an error if the re turn- f rom
expression is not within such a block.

(ro ta t e f place*) Macro
Shifts the values of its arguments left by one place, as if in a circular buffer.
Evaluates all its arguments in order; then, if the call was of the form (ro ta tef
a\ .. .an) puts the value of ai in the place referred to by a\, the value of a-$ in
the place referred to by #2, • • • and the value of a\ in the place referred to by
an. Returns n i l .

(se t f {place value}*) Macro
A generalization of setq: stores in the location associated with each place the
value of the corresponding value expression. If a value expression refers to
one of the preceding places, it will get the new value. Returns the value of the
last value.

A valid place expression may be: a variable; a call to any function designated
here as "settable" so long as the relevant argument is a valid place; a call to
apply whose first argument is # ' aref, # * b i t , or # ' sb i t ; a call to an accessor
function defined by def s t r uc t ; a the or values expression in which the
argument(s) are valid places; a call to an operator for which a set f expansion
has been defined; or a macro call that expands into any of the preceding.

(se tq {symbol value}*) Special Operator
Gives each variable symbol the value of the corresponding value expression. If
a value expression refers to a variable that was one of the preceding symbols,
it will get the new value. Returns the value of the last value.

(sh i f t f placel place* expression) Macro
Shifts the values of its arguments left by one place. Evaluates all its arguments
in order; then, if the call was of the form (sh i f t f a\ .. ,an val) puts the value
of ai in the place referred to by a\, the value of a?, in the place referred to by
ai, . . . and the value of val in the place referred to by an. Returns the value of

a\.

CONTROL AND DATA FLOW 323

(some predicate proseq &rest proseqs) Function
If the shortest proseq has length n, returns true iff predicate, which must be a
function of as many arguments as there are proseqs, returns true when applied
to all the first elements, or all the second elements,... or all the nth elements.
Stops as soon as predicate returns true, returning that value.

(tagbody {tag \ expression]*) Special Operator
Evaluates the expressions in order and returns n i l . May contain calls to go,
in which case the order in which expressions are evaluated (if at all) may be
altered. The tags, which must be symbols or integers, are not evaluated. Atoms
yielded by macro expansions are not treated as tags. All macros whose names
begin with do have implicit tagbodies, as do prog and prog*.

(throw tag expression) Special Operator
Returns the value(s) of expression from the nearest dynamically enclosing
catch expression whose tag is eq to the value of tag.

(typecase object {type expression*)* Macro
[({t | otherwise} expression*)])

Evaluates object, then looks at the remaining clauses in order; if the object is
of some type (not evaluated), or the clause begins with t or otherwise, then
evaluates the following expressions and returns the value(s) of the last. Returns
n i l if no type matches, or the matching type has no expressions.

(unless test expression*) Macro
An expression of the form (unless test e\ .. .en) is equivalent to (when
(not test) e\ .. .en).

(unwind-protect expressionl expression*) Special Operator
Evaluates its arguments in order, and returns the value(s) of the first. Evaluates
the remaining arguments even if the evaluation of the first is interrupted.

(values &rest objects) Function
Returns its arguments.

(v a l u e s - l i s t prolist) Function
Returns the elements of prolist.

(when test expression*) Macro
Evaluates the test expression; if it returns true, evaluates the expressions in
order and returns the value(s) of the last; otherwise returns n i l . Returns n i l
if there are no expressions.

324 APPENDIX D

Iteration
(do ({var | (var [init [update]])}*) Macro

(test result*)
declaration* {tag \ expression}*)

Evaluates its body first with each var bound to the value of the corresponding
init expression (or n i l if there isn't one), and on each successive iteration set
to the value of the corresponding update expression (or the previous value, if
there isn't one). Each time the body is about to be evaluated, the test expression
is evaluated; if it returns false, the body is evaluated, but if it returns true, the
result expressions are evaluated in order and the value of the last is returned.
The body is enclosed in an implicit tagbody, and the whole do expression in
an implicit block named n i l .
If an init expression refers to a variable with the name of a var, it will refer
to the variable with that name in the context where the do expression occurs.
If an update expression refers to a var, it will get the value from the previous
iteration. That is, variables are established as if by l e t and updated as if by
psetq.

(do* ({var \ (var [init [update]])}*) Macro
(test result*)
declaration* {tag | expression}*

Like do, except that variables are established as if by l e t * and updated as if
by setq.

(d o l i s t (var list [result]) Macro
declaration* {tag | expression}*)

Evaluates its body with var bound to successive elements of the value of list.
If the value of list is n i l , the body is never evaluated. The body is enclosed in
an implicit tagbody, and the whole d o l i s t expression in an implicit block
named n i l . Returns the value(s) of the result expression, or n i l if there isn't
one. The result expression may refer to var, which will be n i l .

(dotimes (var integer [result]) Macro
declaration* {tag | expression}*)

Evaluates its body with var bound to successive integers from 0 to the value of
integer minus 1, inclusive. If the value of integer is not positive, the body is
never evaluated. The body is enclosed in an implicit tagbody, and the whole
dotimes expression in an implicit block named n i l . Returns the value(s) of
the result expression, or n i l if there isn't one. The result expression may refer
to var, which will be the number of times the body was evaluated.

(loop expression*) Macro
Short form: If the expressions do not include loop keywords, evaluates them in
order, forever. The expressions are enclosed in an implicit block named n i l .

ITERATION 325

(loop [name-clause] var-clause* body-clause*) Macro
Long form: The evaluation of a loop expression containing loop keywords
proceeds as follows:

1. All the variables created by it are bound, possibly to random values of
the proper type.

2. The loop prologue is evaluated.

3. The variables are set to their initial values.

4. End tests are performed.

5. If the end tests all fail, the body of the loop is evaluated; then the variables
are updated, and control returns to the previous step.

6. If some end test succeeds, the loop epilogue is evaluated, and a value
(see below) is returned.

Individual clauses can contribute code to several different steps. Within steps,
expressions are evaluated in the order in which they appear in the source code.
A loop expression is always enclosed in an implicit block. By default its
name is n i l , but one may be given explicitly in a named clause.
The value returned by a loop expression is the (textually) last accumulated
value, or n i l if there are none. An accumulated value is the value con
structed on successive iterations by a co l l ec t , append, nconc, count, sum,
maximize, minimize, always, never, or t h e r e i s clause.
A name-clause is a named clause. A var-clause can be a with, i n i t i a l l y ,
f ina l ly , or for clause. A body-clause can be any kind of clause except a
named, with, or for clause. Each of the types of clauses is described below.
CONVENTIONS: Unless a description says so explicitly, elements of loop clauses
are not evaluated. A token type indicates a type declaration; it must be an
ordinary type designator, or a tree of type designators that are matched with
corresponding elements of a list as if by destructuring.
SYNONYMS: The loop macro generously assigns synonyms to many key
words. In the following descriptions, the second of each these pairs may be
used in place of the first: upf rom, from; downf rom, from; upto, to ; downto,
to; the, each; of, in; when, if; hash-keys, hash-key; hash-value,
hash-values; symbol, symbols; present-symbol, present-symbols;
external-symbol, external-symbols;do,doing;col lect , co l l ec t ing ;
append, appending; nconc, nconcing; count, counting; sum, summing;
maximize, maximizing; minimize, minimizing.

named symbol

Causes symbol to be the name of the implicit block enclosing the loop
expression.

with varl [typel] - expressionl {and var [type] = expression}*

Binds each var to the value of the corresponding expression, in parallel
as if by a l e t .

326 APPENDIX D

i n i t i a l l y expressionl expression*

Causes the expressions to be evaluated in order as part of the prologue.

f i n a l l y expressionl expression*

Causes the expressions to be evaluated in order as part of the epilogue.

for varl [typeJ] for-restl {and var [type] for-rest}*

Binds each var to the successive values indicated by the corresponding
for-rest during successive iterations. Multiple for clauses linked by
ands cause their variables to be initialized and updated in parallel, like
do. The possible forms of a for-rest are as follows:
[upfrom start] [{upto | below} end] [by step]

At least one of the three optional subexpressions must be chosen;
if more than one are chosen, they may appear in any order. The
variable will initially be bound to the value of start, or 0. On
successive iterations it will be incremented by the value of step, or
1. An upto or below expression adds an end test; upto will stop
iteration when the variable is > the value of end, below when > it.
If the synonyms from and to are used together, or from is used
without a to clause, then the from will be interpreted as an upfrom.

downfrom start [{downto | above} end] [by step]
As above, the subexpressions can appear in any order. The variable
will initially be bound to the value of start. On successive iterations
it will be decremented by step, or 1. A downto or above expression
adds an end test; downto will stop iteration when the variable is <
the value of end, above when < it.

{in | on} list [by function]
If the first keyword is in, the variable will be bound to successive
elements of the value of list; if on, successive tails. The function,
if provided, is applied instead of cdr to the list after each iteration.
Adds an end test: iteration will stop with the end of the list.

= expressionl [then expressionl]
The variable will initially be bound to the value of expressionl. On
successive iterations its value will be found by evaluating expres
sion!, if present, or otherwise expressionl.

across vector
The variable will be bound to successive elements of the value of
vector. Adds an end test: iteration will stop after the last element.

being the hash-keys of hash-table [using (hash-value v2)]
being the hash-values of hash-table [using (hash-key v2)]

In the first case, the variable will be set on successive iterations
to the keys (in no particular order) of hash-table, and the optional
v2 will be set to the corresponding values. In the second case, the
variable will be set to the values, and v2 to the keys. Adds an end
test: iteration will stop after the last key or value.

ITERATION 327

being each {symbol | present-symbol | external-symbol}
[of package]

The variable will be set to successive symbols accessible in, present
in, or external to a package. The package argument is used as an
argument to find-package. Uses the current package if none is
given. Adds an end test: iteration will stop after the last symbol.

do expression! expression*

Causes the expressions to be evaluated in order.

re tu rn expression

Causes the loop expression to return the value of expression immediately,
without evaluating the epilogue.

{col lect | append | nconc} expression [into var]

Accumulates a list, initially n i l , during iteration. If the keyword is
co l lec t , the list will be a list of all the values returned by expression; if
append, the values it returned appended together; if nconc, the values
it returned nconced together. If a var is provided, it will be bound to the
list being accumulated, and the list will not be a default return value for
the loop.

Within a loop, co l lec t , append and nconc clauses can accumulate
into the same variable. If such clauses don't have distinct vars, they will
be interpreted as doing so.

{count | sum | maximize | minimize} expression [into var] [type]

Accumulates a number during iteration. If the keyword is count, the
number will reflect the number of times the expression returned true; if
sum, the sum of all the values it returned; if maximize, the maximum
value it returned; if minimize, the minimum value it returned. With
count and sum the number will initially be zero; with maximize and
minimize its initial value is unspecified. If a var is provided, it will be
bound to the number being accumulated, and the number will not be a
default return value for the loop. The type, if given, declares the type of
the accumulated number.

Within a loop, sum and count clauses can accumulate into the same
variable. If such clauses don't have distinct vars, they will be interpreted
as doing so. Ditto for maximize and minimize.

when test then-clause 1 {and then-clause}*
[else else-clause 1 {and else-clause}*] [end]

Evaluates test. If it returns true, the then-clauses are evaluated in order;
otherwise the else-clauses are evaluated in order. The then-clauses and
else-clauses can be do, re turn, when, unless , co l lec t , append,
nconc, count, sum, maximize, or minimize clauses.
The expression in then-clause 1 or else-clause 1 can be the i t , in which
case it will refer to the value of test.

328 APPENDIX D

unless test then-clause 1 {and then-clause}*
[else else-clause 1 {and else-clause}*] [end]

A clause of the form unless test e\ .. .e„ is equivalent to when (not
test) e\ .. .en.

repeat integer

Adds an end test: iteration will stop after integer iterations.

while expression

Adds an end test: iteration will stop if expression returns false.

unt i l expression

Equivalent to while (not expression).

always expression

Like while, but also provides a return value for the loop: n i l if the
expression returned false, t otherwise.

never expression

Equivalent to always (not expression).

thereis expression

Like u n t i l , but also provides a return value for the loop: the value of
expression if it returned true, n i l otherwise.

(loop- f in i sh) Macro
Can only be used within a loop expression, where it ends iteration and transfers
control to the loop epilogue, after which the loop returns normally.

Objects

(add-method generic-function method) Generic Function
Makes method a method of generic-function, returning generic-function. Over
writes any existing method with matching qualifiers and specializations. The
method may not be a method of another generic function.

(a l l oca t e - in s t ance class &rest initargs &key) Generic Function
Returns an instance of class with uninitialized slots. Allows other keys.

(call-method method ftoptional next-methods) Macro
When called within a method, invokes method, returning whatever value(s)
it returns. The next-methods, if provided, should be a list of methods; they
will be the next methods of method. The method may also be (and the next-
methods may include) a list of the form (make-method expression), which
corresponds to a method whose body is expression. If such a method is invoked,
the expression will be evaluated in the global environment, except that there
will be a local macro definition of call-method.

OBJECTS 329

(call-next-method ftrest args) Function
When called within a method, invokes the next method on args, returning what
ever value(s) it returns. If no args are given, uses the arguments passed to the
current method (ignoring any assignments done to the parameters). Under stan
dard method combination, call-next-method can be called within primary
and around methods. If there isn't a next method, calls no-next-method,
which signals an error by default.

(change-class instance class &rest initargs &key) Generic Function
Changes the class of instance to class, returning instance. An existing slot
that has the same name as a local slot in class remains intact, otherwise
it is discarded. New local slots required by class are initialized by calling
update- instance-f or-redef ined-c lass . Allows other keys.

(class-name class) Generic Function
Returns the name of class. Settable.

(class-of object) Function
Returns the class of which object is an instance.

(compute-applicable-methods generic-function args) Generic Function
Returns a list, sorted from most to least specific, of the methods of generic-
function that would be applicable if it were invoked on the elements of the list
args.

(defclass name (superclass*) (slot-spec*) class-spec*) Macro
Defines and returns a new class named name. If name was already a class name,
existing instances are updated to conform to the new class. The superclasses
are the names, in order, of its superclasses. (They need not exist until we
want to make instances of the new class.) The slots of the new class are a
combination of those inherited from the superclasses, and local slots specified
in the slot-specs. For an explanation of how conflicts ar resolved, see page 408.
Each slot-spec must be either a symbol or a list (.symbol k\ v*.. .kn vn*),
where no k is used twice. The symbol is the name of the slot. The ks may be:

: reader fname*

Defines an unqualified method for each fname that returns the value of
the corresponding slot.

: wr i te r fname*

Defines an unqualified method for each fname that refers to the value of
the corresponding slot, and is settable but cannot be called directly.

: accessor fname*

Defines an unqualified method for each fname that refers to the corre
sponding slot, and is settable.

.•allocation where

If where is : ins tance (the default), each instance will have its own slot;
if : c lass , a single will be shared by all instances.

330 APPENDIX D

: i n i t f orm expression

When instances are created and there are no explicit or default initargs,
the slot will be set to the value of expression.

: i n i t a r g symbol*

Each symbol can be used like a keyword parameter to specify the value
of the slot when instances are made by make-instance. The symbols
do not have to be actual keywords. The same symbol can be used as an
initarg for more than one slot in a class.

:type type

Declares that the slot will contain values of type type.

:documentation string

Provides a documentation string for the slot.

The class-specs may be any combination of: (:documentation string),
(rmetaclass symbol), or (: d e f a u l t - i n i t a r g s k\ e\ . . .kn en). The latter
are used when instances are initialized; see make-instance. If the es are eval
uated, they will be evaluated in the expression (In any call to make-instance,
every e associated with a k that does not appear in the call gets evaluated.) The
: documentation becomes the documentation of the class. The rmetaclass
can be used to give the new class a metaclass other than s tandard-c lass .

(defgeneric fname parameters entry*) Macro
Defines, or augments the definition of, a generic function named fname. Re
turns this function. Causes an error if fname is the name of a normal function
or a macro.
The parameters are a specialized lambda-list; see def method. All methods
for the generic function must have parameter lists congruent with one another
and with parameters.

The entrys may include one or more of the following:

(: argument-precedence-order parameter*)

Overrides the precedence order implied by the second argument to
def generic. The parameters must include each of the parameters
of the generic function.

(declare (optimize property*))

Declares how the compilation of the generic function itself (e.g. the code
that handles dispatch) should be optimized. Does not apply to individual
methods. See declare .

(: document at ion string)

Provides function documentation for fname.

OBJECTS 331

(:method-combination symbol argument*)

Specifies that the generic function should use the kind of method com
bination named by symbol. Built-in combination types don't take any
arguments, but combination types that do can be defined by using the
long form of def ine-method-combination.

(:gener ic - func t ion-c lass symbol)

Specifies that the generic function should be of the class named symbol.
This can be used to change the class of an existing generic function. The
default is s tandard-generic-funct ion.

(:method-class symbol)

Specifies that all methods of the generic function should be of the class
named symbol. May change the class of existing methods. The default
is standard-method.

(: method qualifier* parameters . body)

Equivalent to (def method fname qualifier* parameters . body) The
entrys may include more than one expression of this type.

(define-method-combination symbol property*) Macro
Short form: Defines a new type of method combination. The short form is used
for straightforward operator method combination. If ci .. .c„ represent calls
to the applicable methods, from most to least specific, of a generic function
that uses symbol method combination, then the generic function call will be
equivalent to (symbol c\ .. .cn). A property can be:
:documentation string

Makes string the method-combination documentation of symbol, and
also the documentation string of the method combination object.

: identity-with-one-argument bool

Makes it possible to optimize generic function calls where there is only
one applicable method. If bool is true, the value(s) returned by that
method will simply be returned by the generic function. Used in and
and progn method combination, for example.

:operator opname

Specifies the actual operator (possibly different from symbol) to use in the
generic function. The opname can be a symbol or a lambda expression.

332 APPENDIX D

(define-method-combination symbol parameters Macro
(group-spec*)
[(:arguments . parameters2)]
[(:gener ic-funct ion var)]
. body)

Long form: Defines a new form of method combination by specifying how the
expansion of a call to the generic function should be computed. A call to a
generic function that uses symbol method combination will be equivalent to the
expression returned by body, when this expression is evaluated the only local
binding will be a macro definition for call-method.
The forms preceding the body bind variables that can be used in generating the
expansion. The parameters get whatever arguments are given after symbol in
the : method-combination argument to def generic. The parameters2 (if
present) get the forms that appear in the call to the generic function; leftover
optional parameters get the corresponding initforms; there can also be an
ftwhole parameter, which gets a list of all the argument forms. The var (if
present) will be bound to the generic function object itself.
The group-specs can be used to associate variables with disjoint lists of the
applicable methods. Each group-spec can be of the form (var {pattern* |
predname} option*). Each var will be bound to a list of methods whose
qualifiers match some associated pattern or satisfy the predicate whose name
is the symbol predname. (If no predname is given there must be at least one
pattern.) A pattern can be *, which matches any list of qualifiers, or a list of
symbols, which matches an equal list of qualifiers. (This list may also have
*s as elements, or as the cdr.) A method with a given list of qualifiers will be
accumulated in the first var whose predicate returns true of this list, or one of
whose patterns matches it. The options can be:

:desc r ip t ion format

Some programming tools will use format as the second argument in a
call to format, where the third argument is a list of method qualifiers.

: order order

If the value of order is : m o s t - s p e c i f i c - f i r s t (the default), then meth
ods will be accumulated most specific first; if it is : most-speci f ic-
l a s t , they will be accumulated in the reverse order.

: required bool

If the value of bool is true, then it will cause an error if no methods are
accumulated by this clause.

(defmethod fname qualifier* parameters . body) Macro
Defines a method for the generic function named fname, which is created if it
doesn't exist. Returns the new method. Causes an error if fname is the name
of a normal function or a macro.

The qualifiers are atoms used by method combination. Standard method com
bination allows the qualifiers to include either : before, : af ter , or : around.

OBJECTS 333

The parameters are like those of a normal function, except that required pa
rameters may be expressed as a list of the form (name specialization), where
the specialization is either a class, a class name, or a list of the form (eql
expression). The first kind of specialization requires the corresponding argu
ment to be of the specified class; the second requires it to be eql to the value of
expression, which is evaluated when the defmethod expression is expanded.
Methods are uniquely identified by their qualifiers and specializations, and
will overwrite existing methods with the same ones. The parameters must be
congruent with those of every other method of the generic function, and with
any parameter list specified in a call to def generic.

When this method is invoked, it is equivalent to calling (lambda parms
. body), where parms is parameters without the specializations, on the argu
ments originally passed to the generic function. As with def un, the body is
implicitly enclosed in a block named fname iffname is a symbol, or/iffname
is a list of the form (setf /) .

(ensure-generic-function fname &key argument-precedence-order Function
declare documentation
environment generic-function-class
lambda-list method-class
method-combination)

Makes fname (which must not be the name of a normal function, or a macro)
the name of a generic function with the corresponding properties. If there
was already a generic function with this name, the properties are overwritten,
possibly after meeting certain restrictions. The argument-precedence-order,
declare, documentation, and method-combination are always overwritten. The
lambda-list must be congruent with the parameter lists of all existing methods.
The generic-function-class must be compatible with the old value, in which
case change-class is called to change it. When method-class is changed,
existing methods are not changed.

(f ind-c lass symbol ftoptional error environment) Function
Returns the class whose name is symbol in environment. If there isn't one,
generates an error if e r ror is true (the default), otherwise returns n i l . Settable;
to detach a name from a class, set its f i nd -c l a s s to n i l .

(find-method generic-function qualifiers specializes Generic Function
ftoptional error)

Returns the method of generic-function whose qualifiers match qualifiers and
whose specializations match specializes. The specializes are a list of classes
(not names); the class t matches an unspecialized parameter. If there is no such
method, then signals an error if error is true (the default), otherwise returns
n i l .

(function-keywords method) Generic Function
Returns two values: a list of the keyword parameters accepted by method, and
a second value true iff method allows other keys.

334 APPENDIX D

(i n i t i a l i z e - i n s t a n c e instance &rest initargs &key) Generic Function
The built-in primary method calls s h a r e d - i n i t i a l i z e to set the slots of
instance as specified by initargs. Called by make-instance. Allows other
keys.

(make-instance class ferest initargs &key) Generic Function
Returns a new instance of class. The initargs must be alternating symbols
and values: k\ v\ .. ,kn vn. Each slot in the new instance will be initialized
as follows: if some k in the initargs is an initarg for that slot, then the slot is
set to the v corresponding to the first such t, otherwise if class or one of its
superclasses has default initargs that include a key for the slot, the slot is set
to the value of the expression following the first such key in the most specific
class; otherwise if the slot has an initform, it is evaluated and the slot is set to
its value; otherwise the slot is unbound. Allows other keys.

(make-instances-obsolete class) Generic Function
Called by def c las s when it is used to change the definition of a class. Updates
all the instances of class (by calling update- ins tance-for- redef ined-
class) , and returns class.

(make-load-form object ftoptional environment) Generic Function
If object is an instance, structure, condition, or class, returns one or two
expressions that would, when evaluated in environment, yield a value equivalent
to object at load time.

(make-load-form-saving-slots instance Function
&key slot-names environment)

Returns two expressions that, when evaluated in environment, yield a value
equivalent to instance at load time. If slot-names is given, only those slots are
preserved.

(method-qualif iers method) Generic Function
Returns a list of the qualifiers of method.

(next-met hod-p) Function
When called within a method, returns true iff there is a next method.

(no-applicable-method generic-function ftrest args) Generic Function
Called when generic-function is invoked in args, but no method is applicable.
The built-in primary method signals an error.

(no-next-method generic-function method ferest args) Generic Function
Called when method, a method of generic-function, tries to call the next method,
and there isn't one. The args are the arguments intended for the nonexistent
next method. The built-in primary method signals an error.

(r e i n i t i a l i z e - i n s t a n c e instance &rest initargs) Generic Function
Sets the slots of instance as specified by initargs. The built-in primary method
passes the arguments on to s h a r e d - i n i t i a l i z e (with n i l as the second
argument). Allows other keys.

OBJECTS 335

(remove-method {generic-function) method) Generic Function
Destructively removes the method from generic-function, returning generic-
function.

(s h a r e d - i n i t i a l i z e instance names ftrest initargs &key) Generic Function
Sets the slots of instance as specified by initargs. Any remaining slot is
initialized to the value of its i n i t f orm if its name is listed in names, or names
is t . Allows other keys.

(slot-boundp instance symbol) Function
Returns true iff the slot named symbol in instance has been set or initialized.
If no such slot, calls s lo t -miss ing.

(s l o t - e x i s t s - p object symbol) Function
Returns true iff object has a slot named symbol.

(slot-makunbound (instance) symbol) Function
Makes the slot of instance named symbol unbound.

(s lo t -miss ing class object symbol opname Generic Function
^optional value)

Called when the operator whose name is opname failed to find a slot named
symbol in an object object of class class. (The value, when present, is the value
this slot was going to be set to.) The built-in primary method signals an error.

(slot-unbound class instance symbol) Generic Function
Called when s lo t -va lue is asked for the value of a slot named symbol in
instance (whose class is class), and that slot is unbound. The built-in primary
method signals an error. If a new method returns a value, that value will be
returned by s lo t -va lue .

(s lo t -va lue instance symbol) Function
Returns the value of the slot in instance named symbol. Calls s lo t -miss ing
if no such slot, slot-unbound if it is unbound; both signal an error by default.
Settable.

(with-accessors ((var fhame)*) instance declaration* expression*) Macro
Evaluates its body with each var bound to the result of calling the corresponding
function on the value of instance. Each fhame must be the name of an accessor
for the instance.

(wi th-s lo ts ({symbol \ (var symbol)}*) instance Macro
declaration* expression*)

Evaluates its body with each symbol (or var if one is given) defined as a local
symbol-macro referring to the slot named symbol in the value of instance.

(unbound-slot-instance condition) Function
Returns the instance whose slot was unbound in condition.

336 APPENDIX D

(upda te - in s t ance - fo r -d i f f e ren t - c l a s s old new Generic Function
&rest initargs
&key)

Called by change-class to set the slots when the class of an instance is
changed. The old instance is a copy of the original instance with dynamic
extent; the new instance is the original instance, with whatever additional slots
are required. The built-in primary method calls s h a r e d - i n i t i a l i z e with:
new, a list of the names of the new slots, and the initargs. Allows other keys.

(update- ins tance-f or-redef ined-c lass instance added Generic Function
deleted plist
ferest initargs)

Called by make-instances-obsolete to set the slots when the class of
instance is redefined; added is a list of slots added in the process; deleted
of those deleted (including any that went from local to shared); and the plist
has elements of the form {name . val) for each element of deleted that had
a value val. The built-in primary method calls s h a r e d - i n i t i a l i z e with:
instance, added, and the initargs.

Structures

(copy-s t ructure structure) Function
Returns a new structure of the same type as structure, in which the values of
the fields are eql.

(defs t ruc t {symbol \ {symbol property*)} [string] field*) Macro
Defines a new structure type whose name is symbol, returning symbol. If
symbol is already a structure name, the consequences are undefined, though in
fact it is usually safe to re-evaluate an unchanged def s t r u c t expression. If
symbol is s t r , then by default also defines a function make-str, which returns
new s t r s ; a predicate s t r - p that returns true of s t r s ; a function copy-str
that copies s t r s ; functions that refer to each of the fields; and a type named
s t r .

If the string is present it becomes the s t ruc tu r e documentation of symbol.
By default it also becomes the type documentation of symbol, and the docu
mentation attached to the object representing the class named symbol.
A property may have any of the following forms:
:cone-name | (:cone-name [name])

The function for referring to a field named f in a structure named s t r
will be name! instead of the default s t r - f . If name is n i l or is not
provided, then the function will be just f.

STRUCTURES 337

: constructor | (: const ructor [name [parameters]])

If a non-nil name is given, the function for making new structures will
be called name. If name is n i l no such function will be defined. If no
name is given, the default name (make-str) will be used. If parameters
is given it must be a list of field names; it becomes the parameter list of
the constructor function, and each field of a new structure will be set to
the argument in the corresponding position. Several constructors may be
defined for a single structure.

: copier | (: copier [name])

If a non-nil name is given, the function for copying structures will be
called name. If name is n i l no such function will be defined. If no name
is given, the default name (copy-str) will be used.

(: include name field*)

Means that s t r s will also include all the fields of the existing structure
type whose name is name. Field access functions for the included
structure will also work on the including one. The fields in the : include
expression have the usual syntax for fields (see below); they can be used
to specify the initform (or lack of one) for a field, or to make a field
read-only, or to specify a type for the field (which must be a subtype
of the original). If the including structure has a : type (see below), the
included structure must be of the same type; otherwise the type of the
included structure will be a subtype of that of the including structure.

(:initial-offset i)

Structures will be allocated with the equivalent of i unused fields occur
ring before the actual fields begin. Used only with :type.

:named

Structures will be allocated with the name preceding the fields.. Used
only with :type.

:predicate | (:p red ica te [name])

If a non-nil name is given, the predicate for identifying structures will
be called name. If name is n i l no such function will be defined. If no
name is given, the default name (s t r -p) will be used. Cannot be used
with : type, unless : named is also specified.

(: p r in t - func t ion [/name])

When a s t r has to be printed, the function whose name is fname (which
can also be a lambda expression) will be called with three arguments:
the structure, the stream to print to, and an integer representing the print
depth. Implemented by making the function a method of p r in t -ob j ect .
Cannot be used with : type.

338 APPENDIX D

(: p r in t -ob jec t \fname])

Like : p r in t - func t ion , but the function is called with just the first two
arguments. Only one of :p r in t - func t ion and :p r in t -ob jec t may
be used.

(: type {vector | (vector type) | l i s t })

Causes the structure to be implemented as an object of the specified type.
Individual s t r s will then be regular vectors or lists; no new type will be
defined for the structure, nor any predicate for detecting the structures
(unless :named is specified). If the :type is (vector type), then
: named can be used only if type is a supertype of symbol.

Each field may be a single symbol name, or {name [initform property*]).
The name will be the name of the field, and must not be the same as the name of
any other field, local or inherited via : include. The field name will be used to
construct the name of a (settable) function that will refer to that field; by default
if the structure is called s t r it will be stx-name, but see : cone-name. The
name also becomes a keyword parameter in the default function for creating
s t r s , the value of which will go in the corresponding field in the new structure.
The initform, if present, will be evaluated in the environment in which the
def s t r u c t expression occurred to produce the value of this field each time a
new structure is created; if no initform is given, the contents of the field will
initially be undefined. A property can be either of:

:type type

Declares that the field will contain objects of type type.

: read-only-p bool

If bool is non-nil, the field will be read-only.

Conditions

(abort ftoptional condition) Function
Invokes the restart returned by (f i n d - r e s t a r t ' abort condition).

(assert test [(place*) [cond arg*]]) Macro
Evaluates test. If it returns n i l , signals the correctable error denoted by the
values of cond and args. The places should be those on which the value of the
test depends; continuing from the error will allow the user to assign new values
to them. Returns n i l if it returns at all.

(break &rest args) Function
Calls format on args, then invokes the debugger. Does not signal a condition.

(ce l l -er ror-name condition) Function
Returns the name of the location in the cell-error condition.

file:///fname

CONDITIONS 339

(cerror format cond ftrest args) Function
Like error , except that is possible to continue from the signalled error, re
turning n i l . The format is given to format when the option to continue is
displayed.

(check-type place type [string]) Macro
Signals a correctable type-error if the value of place is not of type type. The
string, if given, should evaluate to a description of the type of value required.

(compute-restarts ftoptional condition) Function
Returns a list of pending restarts, ordered from newest to oldest. If condition
is supplied, the list will contain all restarts associated with that condition, or
with no condition; otherwise it will contain all pending restarts. The returned
list must not be modified.

(continue &optional condition) Function
Invokes the restart returned by (f i n d - r e s t a r t ' abor t condition) if there
is one, otherwise returns n i l .

(define-condit ion name (parent*) (slot-spec*) class-spec*) Macro
Defines a new condition type, returning its name. Has the same syntax and be
havior as def c lass , except that the class-specs may not include a : metaclass
clause, and may include a : repor t clause. A : repor t clause specifies how
the condition is to be reported. The argument may be a symbol or lambda
expression denoting a function of two arguments (condition and stream), or it
may be a string.

(er ror cond ftrest args) Function
Signals the simple-error denoted by cond and args; unless it is handled, the
debugger will be invoked.

(f i n d - r e s t a r t r feoptional condition) Function
Returns the most recent pending restart whose name is r, if r is a symbol, or
which is eq to r, if r is a restart. If condition is supplied, only restarts associated
with that condition, or with no condition, are considered. Returns n i l if the
specified restart isn't found.

(handler-bind ((type handler)*) expression*) Macro
Evaluates the expressions with local handlers. If a condition is signalled, it
is sent to the function (of one argument) denoted by the first handler whose
type is that of the condition. If the handler declines (by returning), the search
continues. After trying the local handlers, the system looks for handlers
pending when the handler-bind expression was evaluated.

340 APPENDIX D

(handler-case test Macro
{type ([var]) declaration* expression*)*
[(:no-e r ro r parameters declaration* expression*)])

Evaluates test. If a condition is signalled and it is of one of the types, then the
condition is handled and the handler-case expression returns the result(s)
of evaluating the expressions associated with the first matching type, with var
(if present) bound to the condition. If no condition is signalled and there is
no : no-er ror clause, then the handler-case expression returns the value(s)
returned by test. If there is a : no-er ror clause, the handler-case expression
returns the result(s) of evaluating its expressions with the parameters bound to
the value(s) returned by test. The : no-er ror clause may come first, as well
as last.

(ignore -e r ro rs expression*) Macro
Like progn, except that the expressions are evaluated with a local handler for
errors. This handler will cause the ignore-e r rors expression to return two
values: n i l , and the condition that was signalled.

(inval id-method-error method format ftrest args) Function
Used to signal an error when there is an applicable method with invalid quali
fiers. The format and args are passed to format to display the error message.

(invoke-debugger condition) Function
Invokes the debugger with condition.

(invoke- res ta r t restart ftrest args) Function
If restart is a restart, invokes its restart function on args; if it is a symbol,
invokes the restart function of the most recent pending restart with that name
on args.

(i n v o k e - r e s t a r t - i n t e r a c t i v e l y restart) Function
Like invoke- res ta r t , but prompts interactively for the arguments.

(make-condition type ftrest initargs) Function
Returns a new condition of type type. Essentially, a specialized version of
make-instance.

(method-combination-error format ftrest args) Function
Used to signal an error in method combination. The arguments are passed to
format to display the error message.

(muffle-warning & opt ional condition) Function
Invokes the restart returned by (f i n d - r e s t a r t 'muffle-warning condi
tion).

(r e s t a r t - b i n d ((symbol function {key val}*)*) expression*) Macro
Evaluates the expressions with new restarts pending. Each symbol becomes
the name of a restart whose restart function is the value of the corresponding
function. (If symbol is n i l the restart will be anonymous.) A key can be:

CONDITIONS 341

: in te rac t ive - func t ion

The corresponding val must evaluate to a function of no arguments that
constructs a list of arguments for invoke- res ta r t . The default is to
send no arguments.

:report-function

The corresponding val must evaluate to a function of one argument, a
stream, that prints on the stream a description of what the restart does.

: test-function

The corresponding val must evaluate to a function of one argument,
a condition, which returns true iff the restart is applicable under that
condition. By default the restart is applicable under any condition.

(restart-case test (symbol parameters {key val}* Macro
declaration* expression*)*)

Evaluates test with new restarts pending. Each symbol becomes the name of
a restart whose restart function is (lambda parameters declaration* expres
sion*). (If symbol is n i l the restart will be anonymous.) A key can be:
: i n t e r ac t i ve

The corresponding val must be a symbol or lambda expression denot
ing a function of no arguments that constructs a list of arguments for
invoke- res ta r t . The default is to send no arguments.

: report

The corresponding val may be a string describing what the restart does,
or a symbol or lambda expression denoting a function of one argument,
a stream, that prints on the stream a description of what the restart does.

: t e s t

The corresponding val must be a symbol or lambda expression denoting
a function of one argument, a condition, which returns true-iff the restart
is applicable under that condition. By default the restart is applicable
under any condition.

(res t art-name restart) Function
Returns the name of restart or n i l if it is anonymous.

(s ignal cond ftrest args) Function
Signals the condition denoted by cond and args. If it is not handled, returns
n i l .

(simple-condition-format-arguments condition) Function
Returns the format arguments of a simple-condition.

(s imple-condit ion-format-control condition) Function
Returns the format string (or function) of a simple-condition.

342 APPENDIX D

(s tore-va lue object ftoptional condition) Function
Invokes the restart returned by (f i n d - r e s t a r t ' s tore-va lue condition),
if there is one, on object. Otherwise returns n i l .

(use-value object ftoptional condition) Function
Invokes the restart returned by (f i n d - r e s t a r t 'use-value condition), if
there is one, on object. Otherwise returns n i l .

(warn cond ftrest args) Function
Signals the simple-warning denoted by cond and args. If it is not handled,
prints a warning to *error-output* and returns n i l .

(w i th -cond i t i on - r e s t a r t s condition restarts expression*) Macro
First condition is evaluated to produce a condition and restarts to produce a list
of restarts. Then the expressions, are evaluated with all the restarts associated
with the condition.

(wi th - s imple - res ta r t {symbol format arg*) expression*) Macro
Evaluates the expressions with a new restart named symbol which, if invoked,
causes the wi th - s imple - res ta r t expression to return two values: n i l and
t . The format and args are passed to format when the restart is described.

Symbols

(boundp symbol) Function
Returns true iff symbol is the name of a special variable.

(copy-symbol symbol ftoptional props-too) Function
Returns a new uriinterned symbol whose name is s t r i n g * to that of symbol.
If props-too is true, the new symbol will have the same symbol-value and
symbol-function as symbol, and a symbol-plist that is a copy of symbol's.

(gensym ftoptional prefix) Function
Returns a new uninterned symbol. By default its name will be "G1' plus a
representation of the incremented value of *gensym-counter*. If prefix is
supplied and is a string, it is used instead of "G".

(gentemp ftoptional (prefix "T") package) [Function]
Returns a new symbol, internal to package, whose name is prefix followed by
the representation of an internal counter, which is incremented until the name
is unique.

(get symbol key ftoptional default) Function
If the property list of symbol is (k\ V] .. .kn v„), and key is eq to some k, returns
the v corresponding to the first such k. Returns default if there is no such k.
Settable.

(keywordp object) Function
Returns true iff object is a symbol in the keyword package.

(make-symbol string) Function
Returns a new uninterned symbol whose name is s t r ing= to string.

PACKAGES 343

(makunbound symbol) Function
Deletes the special variable, if any, whose name is symbol; (boundp symbol)
will no longer return true. Returns symbol.

(set symbol object) [Function]
Equivalent to (se t f (symbol-value symbol) object).

(symbol-function symbol) Function
Returns the global function whose name is symbol. Signals an error if there
isn't one. Settable.

(symbol-name symbol) Function
Returns the string that is symbol's name. This string must not be modified.

(symbolp object) Function
Returns true iff object is a symbol.

(symbol-package symbol) Function
Returns the home package of symbol.

(symbol-plist symbol) Function
Returns the property list of symbol. Settable.

(symbol-value symbol) Function
Returns the value of the special variable whose name is symbol. Signals an
error if there isn't one. Settable.

(remprop (symbol) key) Function
If the property list of symbol is (k\ v\ .. .kn vn), and key is eq to some k,
destructively removes the first such k and the associated v. Returns true iff the
key was found.

Packages

(defpackage name property*) Macro
Returns a package whose name is name (or its name, if it is a symbol) with
the properties indicated. If there was not already a package named name, one
is created; otherwise the properties of the existing package are modified. A
property can be:

(:nicknames name*)

Sets the package's nicknames to the names (or the names of such of them
are symbols).

(:documentation string)

Makes string the documentation string of the package.

(ruse package*)

Makes the package use each of the packages. See use-package.

344 APPENDIX D

(: shadow name*)

The names can be symbols or strings; the corresponding symbols will be
shadowed in the package. See shadow.

(:shadowing-import-from package name*)

The names can be symbols or strings; the corresponding symbols from
package will be imported as by shadowing-import into the package.

(: import -from package name*)

The names can be symbols or strings; the corresponding symbols from
package will be imported as by import into the package.

(: export name*)

The names can be symbols or strings; the corresponding symbols will be
external to the package. See export.

(: i n t e rn name*)

The names can be symbols or strings; the corresponding symbols are
created in the package if they do not already exist. See in tern .

(: s i z e integer)

Declares the estimated number of symbols expected in the package.

Any property other than : documentation and : s i ze can be duplicated in the
arguments. The properties are assigned in the following order: : shadow and
: shadowing-import-from; then : use; then .-import-from and : in tern;
then :export. Works at compile-time, if the call is a top-level form.

(delete-package package) Function
Removes package from the active packages, though as an object it remains
intact. Returns true iff package was an active package.

(do-all-symbols (var [result]) Macro
declaration* {tag \ expression}*)

Like do-symbols, but iterates on the symbols accessible in every active pack
age.

(do-external-symbols (var [package [result]]) Macro
declaration* {tag | expression}*)

Like do-symbols, but iterates on the external symbols of package.

(do-symbols (var [package [result]]) Macro
declaration* {tag | expression}*)

Evaluates its body with var bound to successive symbols accessible in package.
Symbols inherited from different packages may be encountered multiple times.
The body is enclosed in an implicit tagbody, and the whole do-symbols
expression in an implicit block named n i l . Returns the value(s) of the result
expression, or n i l if there isn't one. The result expression may refer to var,
which will be n i l .

PACKAGES 345

(export symbols ^opt ional package) Function
Makes each of the symbols (which must be either a symbol accessible in
package or a list of such symbols) an external symbol of package. Returns t .

(f ind-all-symbols name) Function
Returns a list of every symbol in an active package whose name is name (if it
is a string) or the name of name (if it is a symbol).

(find-package package) Function
Returns the package denoted by package, or n i l if there isn't one.

(find-symbol string ^opt ional package) Function
Returns the symbol accessible in package whose name is string, plus a sec
ond value indicating that the symbol is either : i n t e rna l , : ex ternal , or
: inher i ted . If there is no symbol named string, both return values are n i l .

(import symbols ^opt ional package) Function
Makes each of the symbols (which must be either a symbol or a list of symbols)
accessible in package. Symbols that have no home package get package as
their home package. Returns t .

(in-package name) Macro
Sets the current package to be the package denoted by name (a string or symbol).
Works at compile-time, if the call is a top-level form.

(in te rn string ftoptional package) Function
Returns the symbol accessible in package whose name is s t r ing= to string,
creating one if necessary. Returns a second value indicating the accessibility of
the symbol; it can be : i n t e rna l , : external , : inher i ted , or n i l , indicating
that the symbol was newly created.

(l i s t - a l l - packages) Function
Returns a new list of every active package.

(make-package name &key nicknames use) Function
Returns a new package whose name is name (or its name, if name is a sym
bol), whose nicknames are the strings in the list nicknames plus the names of
any symbols therein, and which uses the packages indicated by use (a list of
packages and/or strings and symbols denoting them).

(package-error-package condition) Function
Returns the package involved in the package-error condition.

(package-name package) Function
Returns the string that is the name of package, or n i l if it is not active.

(package-nicknames package) Function
Returns a list of the strings that are nicknames of package.

(packagep object) Function
Returns true iff object is a package.

(package-shadowing-symbols package) Function
Returns a list of the shadowed symbols of package.

346 APPENDIX D

(package-used-by-l is t package) Function
Returns a list of the packages that package is used by.

(package-use- l i s t package) Function
Returns a list of the packages that package uses.

(rename-package (package) name ftoptional nicknames) Function
Sets the name of package to name (if it is a string) or the name of name (if it is
a symbol), and the nicknames of package to the strings in the list nicknames,
plus the names of the symbols in it. Returns the package.

(shadow names fcoptional package) Function
For each of the names (which can be a string, a symbol, or a list of strings
and/or symbols), adds the corresponding symbol to the shadowed symbols of
package, and if the corresponding symbol is not owned by package, creates
such a symbol in package. Returns t .

(shadowing-import symbols feoptional package) Function
Makes each of the symbols (which must be either a symbol or a list of sym
bols) internal to package, and adds it to the package's shadowed symbols. If
there already was a symbol with the same name accessible in package, it is
uninterned. Returns t .

(unexport symbols ^opt ional package) Function
Makes each of the symbols (which must be either a symbol accessible in
package or a list of such symbols) an internal symbol of package. Returns t .

(unintern symbol fcoptional package) Function
Removes symbol from package (and from its shadowed symbols). If package
was symbol's home package, it will no longer have one. Returns true iff symbol
was accessible in package.

(unuse-package packages &optional package) Function
Undoes the effect of a use-package with the same arguments. Returns t .

(use-package packages feoptional package) Function
Makes all external symbols of the packages denoted by packages (which can
be a package, string, or symbol, or a list thereof) accessible in package. None
of the packages involved may be the keyword package. Returns t .

(wi th-package- i te ra tor (symbol packages key*) Macro
declaration* expression*)

Evaluates the expressions with symbol defined as a local macro that returns suc
cessive symbols from the packages indicated by packages (which must evaluate
to a package, or a string or symbol denoting one, or a list thereof). The keys
indicate the symbols considered, and can include : i n t e rna l , : external ,
and : inher i ted . The local macro returns four values: a value that is true
iff a symbol is returned (so n i l indicates the stream has run dry); the sym
bol; a keyword indicating whether the symbol is : i n t e rna l , : external , or
: inher i ted ; and the package from which the symbol was obtained. The local
macro may return symbols in any order, and may return the same symbol more
than once if it is inherited from multiple packages.

NUMBERS 347

Numbers

(abs n) Function
Returns a non-negative real with the same magnitude as n.

(acos n) Function
Returns the arc cosine of n, in radians.

(acosh n) Function
Returns the hyperbolic arc cosine of n.

(ar i thmet ic-er ror-operands condition) Function
Returns a list of the operands in the arithmetic-error condition.

(a r i thmet ic -e r ro r -opera t ion condition) Function
Returns the operator (or its name) in the arithrftetic-error condition.

(ash i pos) Function
Returns the integer obtained by shifting a two's-complement representation of
i pos positions to the left (or right if pos is negative).

(asin n) Function
Returns the arc sine of n, in radians.

(asinh n) Function
Returns the hyperbolic arc sine of n.

(atan nl &optional (n2 1)) Function
Returns the arc tangent of nl/n2, in radians.

(atanh n) Function
Returns the hyperbolic arc tangent of n.

(boole op il il) Function
Returns the integer that results from applying the logical operation denoted by
op to two's-complement representations of 1/ and i2. Common Lisp defines 16
constants representing bitwise logical operations. The following table shows
what boole returns when each is given as the first argument:

OP
boole-1
boole-2
boole-andcl
boole-andc2
boole-and
boole-cl
boole-c2
boo le -c l r
boole-eqv
boole- ior
boole-nand
boole-nor
boole-orcl
boole-orc2
boole-set
boole-xor

RESULT
il
i2
(loga^dcl H i2)
(logandc2 il i2)
(legend il i2)
(lognot il)
(lognot i2)
alio
(logeqv il i2)
(logior il i2)
(lognand il i2)
(lognor il i2)
(logorcl il i2)
(logorc2 il i2)
al l l
(iogxor il i2) 1

348 APPENDIX D

(byte length pos) Function
Returns a byte specifier representing length bits, the low-order bit of which
represents 2pos.

(by te -pos i t ion spec) Function
Returns log2 of the number represented by the low-order bit of the byte specifier
spec.

(by te - s ize spec) Function
Returns the number of bits represented by the byte specifier spec.

(c e i l i n g r ^opt ional (d D) Function
Returns two values: the smallest integer / greater than or equal to r/d, and
r — id. The d must be a nonzero real.

(c i s r) Function
Returns a complex number whose real part is (cos r) and whose imaginary
partis (s in r).

(complex rl ftoptional r2) Function
Returns a complex number whose real part is rl and whose imaginary part is
r2, or zero if no r2 is given.

(complexp object) Function
Returns true iff object is a complex number.

(conjugate n) Function
Returns the complex conjugate of n: n if n is a real, and #c (0 — &) if n is #c (a
P).

(cos n) Function
Returns the cosine of n radians.

(cosh n) Function
Returns the hyperbolic cosine of n.

(decf place [n]) Macro
Decrements place by n, or 1 if no n is given.

(decode-float /) Function
Returns three values: the significand of/; its exponent; and a third value
indicating the sign of/, -1 .0 if it is negative and 1.0 otherwise. The first and
third values are floats in the format of/, and the second is an integer.

(denominator rational) Function
If rational is alb in canonical form, returns b.

(depos i t - f i e ld new spec i) Function
Returns the result of replacing the bits of i indicated by the byte specifier spec
with the corresponding bits of new.

(dpb new spec i) Function
Returns the result of replacing the bits of i indicated by the byte specifier spec,
of size s, with the low s bits of new.

NUMBERS 349

(evenp 0 Function
Returns true iff i is even.

(exp n) Function
Returns e".

(expt nl n2) Function
Returns nln2.

(fce i l ing r ftoptional (d 1)) Function
Like ce i l ing , but the first return value is a float.

(f f loor r ftoptional (d 1)) Function
Like f loor, but the first return value is a float.

(f loa t n ftoptional /) Function
Returns a floating-point approximation of n in the format of/, or a single-float
if no/is given.

(f l o a t - d i g i t s /) Function
Returns an integer representing the number of digits in the internal representa
tion of/.

(f loatp object) Function
Returns true iff object is a floating-point number.

(f loa t -p rec i s ion /) Function
Returns an integer representing the number of significant digits in the internal
representation of/.

(f loa t - rad ix /) Function
Returns the radix of the representation of/.

(f loa t - s ign fl ftoptional (f2 (f loa t 1 fl,))) Function
Returns positive or negative j2, depending on the sign of/7.

(f loor r ftoptional id 1)) Function
Returns two values: the greatest integer i less than or equal to r/d, and r — id.
The d must be a nonzero real.

(fround r ftoptional (d 1)) Function
Like round, but the first return value is a float.

(f t runcate r ftoptional id 1)) Function
Like t runcate , but the first return value is a float.

(gcd ftrest is) Function
Returns the greatest common divisor of its arguments, or 0 if none are given.

(ifoagpart n) Function
Returns the imaginary part of n.

(incf place [/*]) Macro
Increments place by n, or 1 if no n is given.

350 APPENDIX D

(in teger-decode-f loa t /) Function
Returns three integers that have the same relation to one another as the values
returned by decode-float .

(in t ege r - l eng th i) Function
Returns the number of bits needed to represent / in two's-complement.

(in tegerp object) Function
Returns true iff object is an integer.

(i s q r t 0 Function
Returns the greatest integer less than or equal to the positive square root of /,
which must be positive.

(lcm ftrest is) Function
Returns the least common multiple of its arguments, or 1 if none are given.

(ldb spec i) Function
Returns the integer whose representation is the bits of i specified by the byte
specifier spec. Settable.

(l d b - t e s t spec i) Function
Returns true if any of the bits of i specified by the byte specifier spec are 1.

(log nl ftoptional n2) Function
Returns Xogninl, or logc«7 if no n2 is given.

(logand &rest is) Function
Returns the integer that results from anding the two's-complement representa
tions of its arguments, or 0 if no arguments are given.

(logandcl il i2) Function
Returns the integer that results from anding the two's-complement representa
tion of i2 with the complement of that of il.

(logandc2 il i2) Function
Returns the integer that results from anding the two's-complement representa
tion of il with the complement of that of i2.

(logb i tp pos i) Function
Returns true iff thepasth bit of the two's-complement representation of i is 1.
The low-order bit is position zero.

(logcount /) Function
Returns the number of 0s in the two's-complement representation of i if / is
negative; otherwise the number of Is.

(logeqv ftrest is) Function
Returns the integer that results from exclusive-noring the two's-complement
representations of its arguments, or -1 if no arguments are given.

(log ior ftrest is) Function
Returns the integer that results from inclusive-oring the two's-complement
representations of its arguments, or 0 if no arguments are given.

NUMBERS 351

(lognand il i2) Function
Returns the complement of the integer that results from anding the two's-
complement representations of its arguments.

(lognor il i2) Function
Returns the complement of the integer that results from oring the two's-
complement representations of its arguments.

(lognot i) Function
Returns the integer whose two's-complement representation is the complement
of that of /.

(logorcl il il) Function
Returns the integer that results from oring the two's-complement representation
of i2 with the complement of that of il.

(logorc2 il i2) Function
Returns the integer that results from oring the two's-complement representation
of il with the complement of that of i2.

(log tes t il i2) Function
Returns true iff any of the Is in the two's-complement representation of il
appear in that of i2.

(logxor &rest is) Function
Returns the integer that results from exclusive-oring the two's-complement
representations of its arguments, or 0 if no arguments are given.

(make-random-state ftoptional state) Function
Returns a new random state. If state is a random state, returns a copy of it; if
n i l , a copy of *random-state*; if t , a randomly-initialized random state.

(mask-field spec i) Function
Returns the integer whose representation has the same bits as / in the region
specified by the byte specifier spec, and 0 elsewhere.

(max rl ftrest rs) Function
Returns the greatest of its arguments.

(min rl &rest rs) Function
Returns the least of its arguments.

(minusp r) Function
Returns true iff r is less than zero.

(mod rl r2) Function
Returns the second value that f loor would return with the same arguments.

(numberp object) Function
Returns true iff object is a number.

(numerator rational) Function
If rational is alb in canonical form, returns a.

352 APPENDIX D

(oddp 0 Function
Returns true iff i is odd.

(pa rse - in teger string ftkey start end radix junk-allowed) Function
Return two values: the bast-radix (default 10) integer read from string, and
the position in the string of the first unread character. The start and end
delimit the string as in sequence functions. The string may contain zero or
more whitespace characters, an optional + or - sign, and one or more digits,
followed by zero or more whitespace characters. (That is, read-macros are not
allowed.) If junk-allowed is false (the default), it will cause an error if the
string is in any other format; if it is true, pa r se - in tege r will simply return
n i l if it does not encounter a legal integer.

(phase n) Function
Returns the angle of n when it is represented in polar coordinates.

(plusp r) Function
Returns true iff r is greater than zero.

(random limit ftoptional (state *random-state*)) Function
Returns a random number less than limit (which must be a positive integer or
float) and of the same type. The state (which gets modified) is the state of the
random number generator.

(random-state-p object) Function
Returns true iff object is a random state.

(r a t i o n a l r) Function
Converts r to a rational. If r is a float, assumes it is completely accurate.

(r a t i o n a l i z e r) Function
Converts r to a rational. If r is a float, assumes it is accurate only to the
precision of the representation.

(r a t i ona lp object) Function
Returns true iff object is a rational number.

(r ea lp object) Function
Returns true iff object is a real number.

(r e a lpa r t n) Function
Returns the real part of n.

(rem rl r2) Function
Returns the second value that t runca te would return with the same arguments.

(round r ftoptional (d 1)) Function
Returns two values: the integer i closest to rid, and r — id. If rid is equidistant
from two integers, the even one is chosen. The d must be a nonzero real.

(s c a l e - f l o a t / i) Function
Returns the result of multiplying/by r1, where r is the radix of the floating-point
representation.

NUMBERS 353

(signum n) Function
If n is real, returns one, zero, or negative one depending on whether n is positive,
zero, or negative. If n is complex, returns a complex number of magnitude one
with the same phase.

(s in n) Function
Returns the sine of n radians.

(sinh n) Function
Returns the hyperbolic sine of n.

(sqr t n) Function
Returns the principal square root of n.

(tan n) Function
Returns the tangent of n radians.

(tanh n) Function
Returns the hyperbolic tangent of n.

(t runcate r ftoptional (d 1)) Function
Returns two values: the integer i that would result from removing any digits
after the decimal point in a decimal representation of rid, and r — id. The d
must be a nonzero real.

(upgraded-complex-part-type type) Function
Returns the type of the parts of the most specialized complex number that can
hold parts whose type is type.

(zerop n) Function
Returns true iff n is zero.

(= nl ftrest ns) Function
Returns true iff the difference between each pair of arguments is zero.

(/= nl ftrest ns) Function
Returns true iff no two of its arguments are - .

(> rl ftrest rs) Function
Returns true iff every argument is greater than the preceding one.

(< rl ftrest rs) Function
Returns true iff every argument is less than the preceding one.

(<- rl ftrest rs) Function
Returns true iff no argument is less than the preceding one.

(>= rl ftrest rs) Function
Returns true iff no argument is greater than the preceding one.

(* ftrest ns) Function
Returns the product of its arguments, or 1 if none are given.

(+ ftrest ns) Function
Returns the sum of its arguments, or 0 if none are given.

354 APPENDIX D

(- nl &rest ns) Function
When called with one argument, returns —nl. A call of the form (- a\ .. .an)
returns a\ — ... — an.

(/ nl ftrest ns) Function
When called with one argument (which must not be zero), returns its reciprocal.
When called with multiple arguments, returns the value of the first divided by
the product of the rest (which must not include zero).

(1+ n) Function
Equivalent to (+ n 1).

(1 - n) Function
Equivalent to (- n 1).

Characters

(alpha-char-p char) Function
Returns true iff char is an alphabetic character.

(both-case-p char) Function
Returns true iff char has case.

(alphanumericp char) Function
Returns true iff char is an alphabetic character or a digit.

(charac ter c) Function
Returns the character corresponding to a character, a string of one character, or
a symbol whose name is such a string.

(characterp object) Function
Returns true iff object is a character.

(char-code char) Function
Returns code attribute of char. This value is implementation-dependent, but in
most implementations it will be the ASCII number.

(char-downcase char) Function
If char is uppercase, returns the corresponding lowercase character; otherwise
returns char.

(char -grea terp charl &rest chars) Function
Like char> but ignores case.

(char-equal charl ftrest chars) Function
Like char= but ignores case.

(char - in t char) Function
Returns a non-negative integer representing char. If the character does not
have implementation-defined attributes, it will be the same as the char-code.

(char - lessp charl forest chars) Function
Like char< but ignores case.

CHARACTERS 355

(char-name char) Function
Returns the string that is the name of char, or n i l if it doesn't have one.

(char-not-greaterp charl fcrest chars) Function
Like char<= but ignores case.

(char-not-equal charl &rest chars) Function
Like char/= but ignores case.

(char-not - lessp charl &rest chars) Function
Like char>= but ignores case.

(char-upcase char) Function
If char is lowercase, returns the corresponding uppercase character; otherwise
returns char.

(char= charl ftrest chars) Function
Returns true iff all its arguments are the same.

(char/= charl &rest chars) Function
Returns true iff no two of its arguments are the same.

(char> charl &rest chars) Function
Returns true iff every argument is greater than the preceding one.

(char< charl ftrest chars) Function
Returns true iff every argument is less than the preceding one.

(char<= charl ftrest chars) Function
Returns true iff no argument is less than the preceding one.

(char>= charl ftrest chars) Function
Returns true iff no argument is greater than the preceding one.

(code-char code) Function
Returns the char that has code as its code attribute.

(d ig i t - cha r / ^opt ional (r 10)) Function
Returns the character that represents i in base r.

(d ig i t - cha r -p char ftoptional (r 10)) Function
Returns true iff char is a digit in base r.

(graphic-char-p char)
Returns true iff char is a graphic character.

(lower-case-p char)
Returns true iff char is a lowercase character.

Function

Function

Function (name-char name)
Returns the character whose name is name (or the name of name, if it is a
symbol). Not case-sensitive.

(s tandard-char-p char) Function
Returns true iff char is a standard character.

(upper-case-p char) Function
Returns true iff char is an uppercase character.

356 APPENDIX D

Conses

(aeons key value alist) Function
Equivalent to (cons (cons key value) alist).

(adjoin object prolist fekey key test test-not) Function
If member would return true with the same arguments, returns prolisty otherwise
returns (cons object prolist).

(append ferest prolists) Function
Returns a list whose elements are the elements of each prolist, in order. The last
argument, which can be of any type, is not copied, so (cdr (append ' (a)
x)) will be eq to x. Returns n i l if given no arguments.

(assoc key alist fekey key test test-not) Function
Returns the first element in alist whose car matches key.

(assoc- i f predicate alist fekey key) Function
Returns the first element in alist for whose car predicate returns true.

(assoc- i f -no t predicate alist fekey key) [Function]
Returns the first element in alist for whose car predicate returns false.

(atom object) Function
Returns true when object is not a cons.

(bu t l a s t list feoptional (n 1)) Function
(nbut las t (list) feoptional (n 1)) Function

Returns a copy of list without the last n elements, or n i l if list has less than n
elements. Causes an error if n is negative.

(car list) Function
If list is a cons, returns its car. If list is n i l , returns n i l . Settable.

(cdr list) Function
If list is a cons, returns its cdr. If list is n i l , returns n i l . Settable.

(c*r list) Functions
where x represents a string of one to four as or ds. Equivalent to the corre
sponding composition of car and cdr. For example, (cdaar x) is equivalent
to (cdr (car (car x))) . Settable.

(cons object! object!) Function
Returns a new cons whose car is object 1 and whose cdr is object!. So if object!
is a list of the form (e\ . . .en), will return (object! e\... .en).

(consp object) Function
Returns true when object is a cons.

(copy-a l i s t alist) Function
Same as (mapcar #'(lambda (x) (cons (car x) (cdr x))) alist).

(copy- l i s t list) Function
Returns a list equal to list in which all the top-level list structure consists of
new conses. If list is n i l , returns n i l .

CONSES 357

(copy-tree tree) Function
Returns a new tree with the same shape and leaves as tree, but in which all the
tree structure consists of new conses. If tree is an atom, returns tree.

(endp list) Function
Returns true when list is n i l .

(f i r s t list) ... (ten th list) Functions
Return the first through the tenth elements of list, or n i l if list does not have
that many elements. Settable.

(getf plist key ^opt ional (default n i l)) Function
If plist is (pi vi . . . pn vn) and pi is the first p eq to key, returns v*. If no p
is eq to key, returns default. Settable.

(ge t -p roper t i es plist prolist) Function
Ifplist is (p\ v\ ... pn Vn) andp, is the first p eq to some element of prolist,
returns/?/, vt, and (/?/ v,- . . . p„ v„). Otherwise returns three n i l s .

(i n t e r sec t ion prolist 1 prolist2 &key key test test-not) Function
(n in te r sect ion {prolist 1) prolist! &key key test test-not) Function

Returns a list of the elements of prolistl that are members of prolistl. Nothing
is guaranteed about the order of the elements in the result.

(l a s t list ^opt ional (n 1)) Function
Returns the last n conses in list, or list if it has less than n elements. If n is 0,
returns the cdr of the last cons in list.

(ld i f f list object) Function
If object is a tail of list, returns a new list of the elements up to object. Otherwise
returns a copy of list.

(l i s t ftrest objects) Function
Returns a new list whose elements are objects.

(l i s t * object ftrest objects) Function
If only one argument is provided, returns it. Otherwise, (l i s t * arg\ .. .argn)
is equivalent to (nconc (l i s t arg\ .. .argn-\) argn).

(l i s t - l e n g t h list) Function
Returns the number of conses in list, or n i l if list is circular (in contrast to
length, which is not defined for circular lists). It is an error if list is a dotted
list.

(l i s t p object) Function
Returns true when object is a list—that is, a cons or n i l .

(make-list n &key (initial-element n i l)) Function
Returns a new list of n initial-elements.

(mapc function prolist &rest prolists) Function
If the shortest prolist has n elements, calls function h times: first on the first
element of each prolist, and last on the nth element of each prolist. Returns
prolist.

358 APPENDIX D

(mapcan function prolist &rest prolists) Function
Equivalent to applying nconc to the result of calling mapcar with the same
arguments.

(mapcar function prolist &rest prolists) Function
If the shortest prolist has n elements, calls function n times: first on the first
element of each prolist, and last on the «th element of each prolist. Returns a
list of the values returned by function.

(mapcon function prolist &rest prolists) Function
Equivalent to applying nconc to the result of calling maplist with the same
arguments.

(mapl function prolist &rest prolists) Function
If the shortest prolist has n elements, calls function n times: first on each prolist,
and last on the (n — l)th cdr of each prolist. Returns prolist.

(maplist function prolist forest prolists) Function
If the shortest prolist has n elements, calls function n times: first on each prolist,
and last on the (n — 1) th cdr of each prolist. Returns a list of the values returned
by function.

(member object prolist &key key test test-not) Function
Returns the tail of prolist starting with the first element matching object, or
n i l if no element matches.

(member-if predicate prolist &key key test test-not) Function
Returns the tail of prolist starting with the first element for which predicate
returns true, or n i l if there is no such element.

(member-if-not predicate prolist &key key test test-not) [Function]
Returns the tail of prolist starting with the first element for which predicate
returns false, or n i l if there is no such element.

(nconc &rest (lists)) Function
Returns a list whose elements are the elements of each list, in order. Works
by setting the cdr of the last cons in each list to the succeeding list. The final
argument can be an object of any type. Returns n i l if given no arguments.

(nth n list) Function
Returns the (n + l)th element of list. Returns n i l if list has less than (n + 1)
elements. Settable.

(nthcdr n list) Function
Equivalent to calling cdr n times in succession with list as the initial argument.

(nu l l object) Function
Returns true when object is n i l .

(p a i r l i s keys values ftoptional alist) Function
Returns the same value as either (nconc (mapcar #,cons keys values)
alist) or (nconc (nreverse (mapcar # 'cons keys values)) alist),With
the additional requirement that keys and values must be of the same length.

CONSES 359

(pop (place)) Macro
Sets place, which must evaluate to a list list, to (cdr list). Returns (car
list).

(push object {place}) Macro
Sets place to (cons object place). Returns this value.

(pushnew object {place) &key key test test-not) Macro
Sets place, which must evaluate to a proper list, to the result of calling adjoin
with the same arguments. Returns the new value of place.

(rassoc key alist &key key test test-not) Function
Returns the first element in alist whose cdr matches key.

(rassoc- i f predicate alist &key key) Function
Returns the first element in alist for whose cdr predicate returns true.

(rassoc- i f -no t predicate alist &key key) [Function]
Returns the first element in alist for whose cdr predicate returns false.

(remf {place) key) Macro
The first argument, place, must evaluate to a property list plist. Ifplist is (p\
vi . . . pn vn) and pi is the first p eq to key, destructively removes pi and v,
from plist, and sets place to the result. Returns true if it removed something,
false otherwise.

(res t list) Function
Identical to cdr. Settable.

(revappend listl list!) Function
(nreconc (listl) list!) Function

Equivalent to (nc one (reverse listl) Ust2) and (nconc (nreverse listl)
Ust2) respectively.

(rplaca (cons) object) Function
Equivalent to (set f (car cons) object), but returns cons.

(rplacd (cons) object) Function
Equivalent to (set f (cdr cons) object), but returns cons.

(set-difference prolistl prolist2 &key key test test-not) Function
(nset-difference (prolistl) prolistl &key key test test-not) Function

Returns a list of the elements of prolistl that are not members of prolist2.
Nothing is guaranteed about the order of the elements in the result.

(set-exclusive-or prolistl prolist2 &key key test test-not) Function
(nset-exclusive-or (prolistl) (prolist2) &key key test test-not) Function

Returns a list of the elements that are members of either prolistl or prolist2, but
not both. Nothing is guaranteed about the order of the elements in the result.

(sublis alist tree &key key test test-not) Function
(nsublis alist (tree) &key key test test-not) Function

Returns a tree like tree, but with each subtree that matches a key in alist replaced
by the corresponding value. If no changes are required, returns tree.

360 APPENDIX D

(subsetp prolistl prolist2 &key key test test-not) Function
Returns true when every element of prolistl is a member of prolistl.

(subst new old tree &key key test test-not) Function
(nsubst new old {tree) ftkey key test test-not) Function

Returns a tree like tree but with each subtree that matches old replaced by new.

(subs t - i f new predicate tree &key key) Function
(nsubs t - i f new predicate {tree) &key key) Function

Returns a tree like tree but with each subtree for which predicate returns true
replaced by new.

(subs t - i f -no t new predicate tree &key key) [Function]
(nsubs t - i f -no t new predicate {tree) &key key) [Function]

Returns a tree like tree but with each subtree for which predicate returns false
replaced by new.

(t a i l p object list) Function
Returns true when object is a tail of list—that is, when object is n i l or one of
the conses that make up list.

(t r ee -equa l treel tree! &key test test-not) Function
Returns true when t r e e l and t r ee2 have the same shape and matching leaves.

(union prolistl prolistl &key key test test-not) Function
(minion {prolistl) {prolist2) &key key test test-not) Function

Returns a list of the elements that are members of prolistl or prolistl. Nothing
is guaranteed about the order of the elements in the result. If either prolistl
or prolistl contain duplicates, then those elements may be duplicated in the
result.

Arrays

(ad jus tab le -a r ray-p array) Function
Returns true iff array is adjustable.

(ad jus t -a r ray {array) dimensions ftkey . . .) Function
Returns an array like array (identical to it if array is adjustable) with some
changed properties. If any of the dimensions are smaller, the original array is
cropped in that dimension; if larger, the new elements may be determined by
the : i n i t i a l - e l e m e n t argument. The keys are as in make-array, with the
following additional stipulations:

: element-type type

The type must be compatible with the original type.

: i n i t i a l - e l e m e n t object

Elements of the array required by larger dimensions will be object; other
elements will retain their original values.

ARRAYS 361

: i n i t i a l - c o n t e n t s seq

As in make-array, which means that the existing elements of array will
be overwritten.

: f i l l - p o i n t e r object

If object is n i l , the fill pointer (if any) will remain the same.

:d isp laced- to array!

If array originally was displaced, but array! is n i l , the corresponding
elements of the old target array will be copied to the array to be returned,
with the : i n i t i a l - e l emen t (if any) filling in the blanks (if any). If
array originally was not displaced, and array! is an array, then the
original contents will be lost and the returned array will be displaced to
array!. Otherwise, as with make-array.

:d isplaced- index-offse t /

If this argument is not supplied, the offset for a displaced array will be
zero.

(aref array ftrest is) Function
Returns the element of array whose indices are the is (or if array is zero-
dimension and no is are given, its one element). Ignores fill pointers. Settable.

(array-dimension array i) Function
Returns the length of the ith dimension of array. Zero-indexed.

(array-dimensions array) Function
Returns a list of integers representing the length of each dimension of array.

(array-displacement array) Function
Returns two values: the array to which array is displaced, and the offset.
Returns n i l and 0 if array is not displaced.

(array-element-type array) Function
Returns the element type of array.

(a r r a y - h a s - f i l l - p o i n t e r - p array) Function
Returns true iff array has a fill pointer.

(array-in-bounds-p array ftrest is) Function
Returns true iff the same arguments would be valid in a call to aref.

(arrayp object) Function
Returns true iff object is an array.

(array-rank array) Function
Returns the number of dimensions array has.

(array-row-major-index array ftrest is) Function
Returns the number of the element specified by the is when the elements of
array are considered in row-major order. Zero-indexed.

362 APPENDIX D

(array—total-s ize array)
Returns the number of locations in array.

Function

Function (bit bit-array ftrest is)
Like aref, but the argument must be a bit array. Settable.

(bit-and (bit-arrayl) bit-array2 ftoptional (arg)) Function
For bit-arrays what logand is for integers: ands two bit-arrays of the same
dimensions, returning the resulting array. If arg is t , the returned array is a
new one; if n i l , bit-arrayl is used for the return value; if arg is a bit-array (of
the same dimensions as the first two), it is used.

(bit-andcl (bit-arrayl) bit-array2 ftoptional (arg))
Like bi t -and, but analogous to logandcl.

(bit-andc2 (bit-arrayl) bit-arrayl ftoptional (arg))
Like bi t -and, but analogous to logandc2.

(bit-eqv (bit-arrayl) bit-array2 ^opt ional (arg))
Like bi t -and, but analogous to logeqv.

(b i t - i or (bit-arrayl) bit-arrayl ftoptional (arg))
Like bi t -and, but analogous to logior .

(bit-nand (bit-arrayl) bit-arrayl ftoptional (arg))
Like bi t -and, but analogous to lognand.

(b i t -no r (bit-arrayl) bit-arrayl ftoptional (arg))
Like bi t -and, but analogous to lognor.

(bit-not (bit-array) ftoptional (arg))
For bit-arrays what lognot is for integers: returning the logical complement
of bit-array. If arg is t , the returned array is a new one; if n i l , bit-array is
used for the return value; if arg is a bit-array (of the same dimensions as the
first), it is used.

(b i t -orc l (bit-arrayl) bit-arrayl ^opt ional (arg))
Like bi t -and, but analogous to logorcl .

(bit-orc2 (bit-arrayl) bit-arrayl fcoptional (arg))
Like bi t -and, but analogous to logorc2.

(bit-xor (bit-arrayl) bit-arrayl ^opt ional (arg))
Like bi t -and, but analogous to logxor.

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

(b i t - v e c t o r - p object)
Returns true iff object is a bit vector.

Function

Function (f i l l - p o i n t e r vector)
Returns the fill pointer of vector. Settable, but only if vector already has a fill
pointer.

ARRAYS 363

(make-array dimensions &key element-type initial-element Function
initial-contents adjustable
fill-pointer displaced-to
displaced-index-offset)

Returns a new array whose dimensions are the dimensions, (or if dimensions
is a single number, a vector of that length). By default the elements can be of
any type, and the value of each element is undefined. The keyword arguments
may be:

: element-type type

Declares that the array will contain objects of type type.

: i n i t i a l - e l emen t object

Each element of the array will be object. Cannot be used with : i n i t i a l -
contents.

• . in i t i a l -con ten ts seq

The elements of the array will be the corresponding elements of the
nested sequence seq. The argument can also be a single object, if the
array is zero-dimensional. Cannot be used with . - ini t ia l -element .

: adjustable object

If object is true, the array is guaranteed to be adjustable; it may be
anyway.

. • f i l l -poin ter object

If object is true, the array (it must be a vector) will have a fill pointer. If
object is an integer between zero and the length of the vector, it will be
the initial value of the fill pointer.

:d isplaced- to array

The array will be displaced to array. A reference to a given element of
the returned array will be translated into a reference to the corresponding
element of array (the element in the same position if the contents of the
two arrays were printed, one element at a time, in row-major order).

:d isplaced- index-offset i

The offset for the mapping onto the target array will be i. Can only be
given if : d i sp laced- to is.

(row-major-aref array i) Function
Returns the ith element of array when the elements are considered in row-major
order. Zero-indexed. Settable.

(sb i t simple-bit-array ftrest is) Function
Like aref, but the argument must be a simple bit array. Settable.

(s imple-bi t -vector-p object) Function
Returns true iff object is a simple bit vector.

364 APPENDIX D

(s imple-vector-p object) Function
Returns true iff object is a simple vector.

(svref simple-vector i) Function
Returns the ith element of simple-vector. Zero-indexed. Settable.

(upgraded-array-element-type type ftoptional env) Function
Returns the actual element type that the implementation would give to an array
whose : element-type was declared to be type.

(vector &rest objects) Function
Returns a new simple vector whose elements are the objects.

(vectorp object) Function
Returns true iff object is a vector.

(vector-pop vector) Function
Decrements the fill pointer of vector and returns the element it then points to.
Causes an error if vector doesn't have a fill pointer, or the fill pointer is already
0.

(vector-push object vector) Function
If the fill pointer is already equal to the length of vector, simply returns n i l .
Otherwise, replaces the element of the vector to which its fill pointer points
with object, then increments the fill pointer and returns its old value. Causes
an error if vector doesn't have a fill pointer.

(vector-push-extend object vector ftoptional i) Function
Like vector-push, but if the fill pointer is already equal to the length of vector,
the vector is first lengthened by i elements (or an implementation-dependent
default) by calling adjus t -ar ray .

Strings

(char string i) Function
Returns the ith character of string. Zero-indexed. Ignores fill pointers. Set-
table.

(make-string n fekey initial-element {element-type ' cha rac t e r)) Function
Returns a new string of n initial-elements (the default values of which is
implementation-dependent).

(schar simple-string i) Function
Like char but the string must be a simple string. Settable.

(s imple -s t r ing-p object) Function
Returns true iff object is a simple string.

(s t r i n g arg) Function
If arg is a string, returns it; if a symbol, returns its name; if a character, returns
a string containing it.

STRINGS 365

(s t r i n g - c a p i t a l i z e string ftkey start end) Function
(n s t r i ng -cap i t a l i z e (string) &key start end) Function

Returns a string in which the first letter of each word is uppercase, and other
characters are lowercase. Each sequence of alphabetic characters is a word.
The first argument to s t r i n g - c a p i t a l i z e may also be a symbol, in which
case its name is used.

(string-dovncase string &key start end) Function
(nstring-downcase (string) ftkey start end) Function

Like s t r ing-upcase and nstr ing-upcase, but characters are converted to
lowercase.

(string-equal string! string2 ftkey start! end! start! end2) Function
Like s t r i ng* but ignores case.

(string-greaterp string! string! &key start! end! start2 end!) Function
Like s t r ing> but ignores case.

(s t r ing-upcase string ftkey start end) Function
(nstr ing-upcase (string) ftkey start end) Function

Returns a string in which lowercase characters are replaced by the correspond
ing uppercase ones. The start and end are used as in sequence functions. The
first argument to s t r ing-upcase may also be a symbol, in which case its
name is used.

(s t r i n g - l e f t - t r i m seq string) Function
Like s t r ing- t r im, but only trims from the front.

(str ing- lessp string! string2 ftkey start! end! start2 end2) Function
Like s t r ing< but ignores case.

(string-not-equal string! string2 &key start! end! start2 end2) Function
Like s t r i n g / - but ignores case.

(s t r ing -no t -g rea te rp stringl string2 Function
ftkey start 1 end! start2 end2)

Like string<= but ignores case.

(string-not- lessp stringl string2 ftkey start! end! start2 end2) Function
Like string>s= but ignores case.

(s t r ingp object) Function
Returns true iff object is a string.

(s t r i n g - r i g h t - t r i m seq string) Function
Like s t r ing- t r im, but only trims from the back.

(s t r i ng - t r im seq string) Function
Returns a string like string, but with any characters that appear in seq removed
from either end.

366 APPENDIX D

(string= string! string2 &key startl endl start2 endl) Function
Returns true iff the subsequences of stringl and string! are the same length
and contain the same characters. The parameters startl and endl, and start2
and endl, work like the usual start and end parameters for stringl and string2
respectively.

(string/= stringl string2 &key startl endl start2 endl) Function
Returns true iff s t r ing= would return false.

(string< stringl string2 &key startl endl start2 end2) Function
Returns true iff the two subsequences contain the same characters up to the end
of the first, and the second is longer; or if the subsequences contain different
characters, and where they differ for the first time, the character in the first
substring is char< the one in the second. The parameters are the same as in
s t r ing=.

(string> stringl string2 &key startl endl start2 end!) Function
Returns true iff the two subsequences contain the same characters up to the end
of the second, and the first is longer; or if the subsequences contain different
characters, and where they differ for the first time, the character in the first
substring is char> the one in the second. The parameters are the same as in
s t r ing=.

(string<= stringl string2 &key startl endl start2 endl) Function
True iff the arguments are s t r ing< or s t r ing=.

(string>= stringl string2 &key startl endl start2 end2) Function
True iff the arguments are s t r ing> or s t r ing=.

Sequences

(concatenate type ferest sequences) Function
Returns a new sequence of type type whose elements are the elements of
sequences, in order. Copies every sequence, even the last.

(copy-seq proseq) Function
Returns a new sequence of the same type as proseq and with the same elements.

(count object proseq &key key test test-not from-end start end) Function
Returns the number of elements in proseq that match object.

(count-if predicate proseq &key hey from-end start end) Function
Returns the number of elements in proseq for which predicate returns true.

(count-if-not predicate proseq &key key from-end start end) [Function]
Returns the number of elements in proseq for which predicate returns false.

(e l t proseq n) Function
Returns the (n + l)th element of proseq. It is an error if proseq has less than
n + 1 elements. Settable.

SEQUENCES 367

(f i l l {proseq) object &key start end) Function
Destructively fills proseq with object. Returns proseq.

(find object proseq &key key test test-not from-end start end) Function
Returns the first element in proseq that matches object.

(f ind- i f predicate proseq &key key from-end start end) Function
Returns the first element in proseq for which predicate returns true.

(f ind- i f -not predicate proseq &key key from-end start end) [Function]
Returns the first element in proseq for which predicate returns false.

(length proseq) Function
Returns the number of elements in proseq. If proseq has a fill pointer, returns
the length up to it.

(make-sequence type n &key {initial-element n i l)) Function
Returns a new sequence of type type, whose elements are n initial-elements.

(map type function proseq &rest proseqs) Function
If the shortest proseq has n elements, calls function n times: first on the first
element of each proseq, and last on the «th element of each proseq. Returns a
sequence of type type whose elements are the values returned by function. (If
type is n i l , this is like mapc for sequences.)

(map-into {result) function proseq &rest proseqs) Function
If the shorter of result (which must be a proper sequence) and the shortest
proseq has n elements, calls function n times: first on the first element of each
proseq, and last on the nth element of each proseq. Destructively replaces
the first n elements of result with the values returned by function, and returns
result.

(merge type {sequence!) (sequence2) predicate &key key) Function
Equivalent to (s t a b l e - s o r t (concatenate type sequence 1 sequence!)
predicate : key key), but destructive and more efficient.

(mismatch sequence 1 sequence! Function
&key key test test-not from-end start 1 endl start! end!)

Returns the position (zero-indexed) of the first element of sequence 1 at which
sequencel and sequence! differ. If sequencel and sequence! match in every
element, returns n i l . The parameters startl and endl, and start! and end!,
work like the usual start and end parameters for sequencel and sequence!
respectively.

(posi t ion object proseq Function
&key key test test-not from-end start end)

Returns the position (zero-indexed) of the first element in proseq that matches
object.

(pos i t ion- i f predicate proseq &key key from-end start end) Function
Returns the position (zero-indexed) of the first element in proseq for which
predicate returns true.

368 APPENDIX D

(pos i t i on - i f -no t object proseq ftkey key from-end start end) [Function]
Returns the position (zero-indexed) of the first element in proseq for which
predicate returns false.

(reduce function proseq ftkey key from-end start end initial-value) Function
If the function is/and the elements of proseq are a, b, c, then the behavior of
reduce is indicated by the following table:

from-end
false
false
true
true

initial-value
no
yes
no
yes

EQUIVALENT TO

(f (fab) c) |
(f (f (f initial-value a) b) c)
(fa (fbc))
(f a (f b (f c initial-value))) j

. If proseq contains just one element and no initial-value is provided, that element
is returned. If proseq is empty and an initial-value is provided, it is returned, but
if no initial-value is provided, the return value is the result of calling function
with no arguments. If both key and initial-value are provided, the former is not
called on the latter.

(remove object proseq Function
ftkey key test test-not from-end start end count)

(de le te object {proseq) Function
ftkey key test test-not from-end start end count)

Returns a sequence like proseq but without the elements that match object. If
count is supplied, only the first count instances are removed.

(remove-duplicates proseq Function
ftkey key test test-not from-end start end)

(de le t e -dup l i ca t e s (proseq) Function
ftkey key test test-not from-end start end)

Returns a sequence like proseq without all but the last instance of any duplicate
elements.

(remove-ifpredicate proseq ftkey key from-end start end count) Function
(d e l e t e - i f predicate proseq ftkey key from-end start end count) Function

Returns a sequence like proseq but without the elements for which predicate
returns true. If count is supplied, only the first count instances are removed.

(remove-if-not predicate proseq [Function]
ftkey key from-end start end count)

(d e l e t e - i f - n o t predicate (proseq) [Function]
ftkey key from-end start end count)

Returns a sequence like proseq but without the elements for which predicate
returns false. If count is supplied, only the first count instances are removed.

SEQUENCES 369

(replace (sequencel) sequence! ftkey start! endl start! end!) Function
Destructively replaces sequencel with sequencel, and returns sequencel. The
number of elements replaced will be equal to the length of the shorter subse
quence. Works if sequencel and sequencel are eq, but not if they merely share
structure. The parameters start 1 and endl, and start! and endl, work like the
usual start and end parameters for sequencel and sequencel respectively.

(reverse proseq) Function
(nreverse {proseq)) Function

Returns a sequence of the same type as proseq, containing the same elements
in the reverse order. The sequence returned by reverse is always a copy. If
proseq is a vector, reverse returns a simple vector.

(search sequencel sequencel Function
ftkey key test test-not from-end start 1 endl startl endl)

Returns the position (zero-indexed) of the first subsequence of sequencel that
matches sequencel. If no matching subsequence is found, returns n i l . The
parameters startl and endl, and startl and end!, work like the usual start and
end parameters for sequencel and sequence! respectively.

(sor t {proseq) predicate ftkey key) Function
Returns a sequence of the same type as proseq, containing the same elements,
in an order such that there are no two successive elements e and/such that
(predicate ef)is false and (predicate f e) is true.

(s t ab l e - so r t {proseq) predicate ftkey key) Function
Like sor t , but preserves as much of the original order of the elements ofproseq
as possible.

(subseq proseq start & opt ional end) Function
Returns a new sequence which is a subsequence of proseq. The parameters
start and end indicate a subsequence in the same way as the corresponding
keyword arguments: start is the position (zero-indexed) of the first element in
the subsequence, and end, if given, is the position after the last element in the
subsequence. Settable, as if by replace.

(subs t i t u t e new old proseq Function
ftkey key test test-not from-end start end count)

(nsubs t i tu te new old {proseq) Function
ftkey key test test-not from-end start end count)

Returns a sequence like proseq except that elements matching old are replaced
by new. If count is supplied, only the first count instances are replaced.

(s u b s t i t u t e - i f new predicate proseq Function
ftkey key from-end start end count)

(n subs t i t u t e - i f new predicate {proseq) Function
ftkey key from-end start end count)

Returns a sequence like proseq except that elements for which predicate returns
true are replaced by new. If count is supplied, only the first count instances are
replaced.

370 APPENDIX D

(s u b s t i t u t e - i f - n o t new predicate proseq [Function]
&key key from-end start end count)

(n s u b s t i t u t e - i f - n o t new predicate (proseq) [Function]
&key key from-end start end count)

Returns a sequence like proseq except that elements for which predicate returns
false are replaced by new. If count is supplied, only the first count instances
are replaced.

Hash Tables

(c l rhash hash-table) Function
Removes all the entries from hash-table and returns it.

(gethash key hash-table feoptional default) Function
Returns the object indexed under key in hash-table, or default if there isn't one.
Returns a second value true iff an entry was found. Settable.

(hash-table-count hash-table) Function
Returns the number of entries in hash-table.

(hash- table-p object) Function
Returns true iff object is a hash table.

(hash- tab le - rehash-s ize hash-table) Function
Returns a number, with the same significance as the -.rehash-size argument
to make-hash-table, that indicates how much hash-table should grow if it
has to be expanded.

(hash- tab le- rehash- threshold hash-table) Function
Returns a number, with the same significance as the : rehash-threshold
argument to make-hash-table, that indicates when hash-table will be ex
panded.

(hash - t ab le - s i ze hash-table) Function
Returns the number of spaces in hash-table.

(ha sh - t ab l e - t e s t hash-table) Function
Returns the function used to determine key equality in hash-table.

(make-hash-table &key test size rehash-size rehash-threshold) Function
Returns a new hash table that uses test (default: eql) to determine the equality
of keys. The size is a suggestion of the number of entries expected. The
rehash-size is a suggestion of how much the table should grow if it has to be
expanded: if an integer, suggests that many spaces should be added; if a float,
suggests that the number of spaces should be multiplied by that amount. The
rehash-threshold is a number between zero and one that suggests how full the
table should be allowed to get before being expanded.

(maphash function hash-table) Function
Applies function, which must be a function of two arguments, to the key and
value of each entry in hash-table.

FILENAMES 371

(remhash key (hash-table)) Function
Removes the object indexed under key from hash-table, returning true iff there
was one.

(sxhash object) Function
Essentially, a hashing function for equal hash tables. Returns a unique non-
negative fixnum for each set of equal arguments.

(w i th -hash - t ab le - i t e ra to r (.symbol hash-table) Macro
declaration* expression*)

Evaluates the expressions with symbol defined as a local macro that returns
information about successive entries in the value of hash-table. The local
macro usually returns three values: a value that is true iff more values are
returned (so n i l indicates the stream has run dry); the key of an entry; and the
object indexed under it.

Filenames

(directory-namestr ing path) Function
Returns an implementation-dependent string representing the directory com
ponent of path.

(enough-namestring path ftoptional path2) Function
Returns an implementation-dependent string representing enough of path to
identify the file when the default is path2 (default: *default-pathname-
defaults*).

(f i le-namestr ing path) Function
Returns an implementation-dependent string representing the name, type, and
version components of path.

(host-names t r ing path) Function
Returns an implementation-dependent string representing the host component
of path.

(load- logica l -pa thname- t rans la t ions string) Function
Loads the definition of a logical host whose name is string, if it is not already
loaded. Returns true iff it loaded something.

(logical-pathname path) Function
Returns the logical pathname corresponding to path.

(logica l -pathname-t rans la t ions host) Function
Returns the list of the translations of the host, which must be a logical host or
a string denoting one.

372 APPENDIX D

(make-pathname &key host device directory name type version Function
defaults case)

Returns a pathname made from its arguments. Unspecified elements are taken
from defaults', if it is not supplied, the default host is that of •defau l t -
pathname-defaults*, and the default for the other components is n i l .
The host can be a string or list of strings that is recognized as a host name. The
device can be a string. The directory can be a string, a list of strings, or : wild.
The name and type can be strings or : wild. The version can be a non-negative
integer, : wild, or : newest; in many implementations it can also be : oldest ,
: previous, or : i n s t a l l e d . All the preceding arguments can also be n i l , in
which case the component may get a default value, or :unspecific, which
stands for "not applicable," and is not portable.

The defaults argument can be any valid argument to pathname, and is treated
the same way. Components that are nil or not given get their values from this
default pathname, if it is given.

If case is : l oca l (the default) then pathname components will be in the local
system's case; if : common, all-uppercase components indicate the system's
customary case, and mixed-case components are taken literally.

(merge-pathnames path ftoptional default-path version) Function
Returns the pathname that results from filling in any missing components in
path with those of default-path (default: *default-pathname-defaults*).
If path includes a name component, then the version can come from version
(which defaults to : newest); otherwise it comes with the other components
from default-path.

(namestring path) Function
Returns an implementation-dependent string representing path.

(parse-namestring path ftoptional host default Function
&key start end junk-allowed)

If path is not a string, returns the corresponding pathname as usual. If it is
a string, parses it as a logical pathname, the host of which comes from the
host argument, or the string itself, or the default pathname, in that order of
preference. Generates an error if no valid pathname is seen, unless junk-
allowed is true, in which case it returns n i l . The start and end are used as
in sequence functions. Returns as a second value the index at which parsing
stopped.

(pathname path) Function
Returns the pathname corresponding to path.

(pathname-host path &key case) Function
Returns the host component of path. A : case argument is treated as by
make-pathname.

FILES 373

(pathname-device path &key case) Function
Returns the device component of path. A :case argument is treated as by
make-pathname.

(pathname-directory path &key case) Function
Returns the directory component of path. A : case argument is treated as by
make-pathname.

(pathname-match-p path wild-path) Function
Returns true iff path matches wild-path; any missing components of wild-path
will be treated as : wild.

(pathname-name path &key case) Function
Returns the name component of path. A :case argument is treated as by
make-pathname.

(pathnamep object) Function
Returns true iff object is a pathname.

(pathname-type path &key case) Function
Returns the type component of path. A :case argument is treated as by
make-pathname.

(pathname-version path &key case) Function
Returns the version component of path. A :case argument is treated as by
make-pathname.

(t rans la te- logical -pathname path &key) Function
Returns the physical pathname corresponding to path.

(translate-pathname pathl pathl path3 &key) Function
Translates pathl, which matches the wild pathname pathl, into the correspond
ing pathname that matches the wild pathname path3.

(wild-pathname-p path &optional component) Function
Returns true iff the component of path designated by component (which can
be :host, : device, : d i rec tory , :name, :type, or : version) is wild, or,
if component is n i l , if path has any wild components.

Files

(d e l e t e - f i l e path) Function
Deletes the file denoted by path. Returns t .

(d i rec tory path &key) Function
Creates and returns a list of the pathnames representing real files that match
path (which may contain wild components).

(ensu re -d i r ec to r i e s -ex i s t path &key verbose) Function
If the directories containing the file denoted by path do not exist, attempts to
create them (possibly announcing this, if verbose is true). Returns two values:
path, and a second value true iff any directories were created.

374 APPENDIX D

(f i l e - au tho r path) Function
Returns a string representing the author of the file denoted by path, or n i l if it
can't be determined.

(f i le-error-pathname condition) Function
Returns the pathname in the file-error condition.

(f i l e - w r i t e - d a t e path) Function
Returns the time, in the same format as ge t -universa l - t ime, at which the
file denoted by path was last written, or n i l if it can't be determined.

(p robe- f i l e path) Function
Returns the actual name of the file denoted by path, or n i l if this file does not
exist.

(rename-fi le pathl pathl) Function
Renames the file denotes by pathl with the name corresponding to pathl
(which may not be a stream). Empty components in pathl default to those of
pathl. Returns three values: the resulting pathname, the old actual file name,
and the new actual file name.

(truename path) Function
Returns the actual name of the file denoted by path', signals an error if the file
does not exist.

Streams

(broadcast-stream-streams broadcast-stream) Function
Returns a list of the streams that compose broadcast-stream.

(c lea r - inpu t ftoptional stream) Function
Clears any input waiting in stream, returning n i l .

(c lear -output ftoptional stream) Function
Discards any buffered output on stream, returning n i l .

(c lose stream &key abort) Function
Closes stream, returning t if the stream had been open. If abort is true, tries
to remove any sign of the stream having existed—that is, an associated output
file will be deleted. A closed stream may not be written to, but may be used as
an argument to functions on pathnames, including open.

(concatenated-stream-streams concatenated-stream) Function
Returns a list of the streams of concatenated-stream that must still be read
from.

(echo-stream-input-stream echo-stream) Function
Returns the input stream of echo-stream.

(echo-stream-output-stream echo-stream) Function
Returns the output stream of echo-stream.

STREAMS 375

(f i l e - l eng th stream) Function
Returns the number of elements in stream, or n i l if it cannot be determined.

(f i l e - p o s i t i o n stream ftoptional pos) Function
If no pos is given, returns the current position in in stream, or n i l if it cannot
be determined. If pos is given, it can be : s t a r t , :end, or a non-negative
integer, and the position in stream is set accordingly

(f i l e - s t r i n g - l e n g t h stream object) Function
Returns the difference between the current position in stream and what it would
be if object were written to it; or n i l if this cannot be determined.

(f in ish-output ^optional stream) Function
Forces out any buffered output on stream, then returns n i l .

(force-output feoptional stream) Function
Like f in ish-output , but does not wait till the I/O operation is completed
before returning.

(f resh- l ine ftoptional stream) Function
Writes a newline to stream if it is not at the start of a line.

(ge t -output -s t ream-s t r ing stream) Function
Returns a string containing all the characters sent to stream (which must be
open) since it was opened, or since the last time ge t -ou tpu t - s t r eam-s t r ing
was called on it.

(input-stream-p stream) Function
Returns true iff stream is an input stream.

(in te rac t ive-s t ream-p stream) Function
Returns true iff stream is an interactive stream.

(l i s t e n ^optional stream) Function
Returns true iff there is a character waiting to be read from stream, which is
intended to be an interactive stream.

(make-broadcast-stream &rest streams) Function
Returns a new broadcast stream composed of streams.

(make-concatenated-stream &rest input-streams) Function
Returns a new concatenated stream composed of input-streams.

(make-echo-stream input-stream output-stream) Function
Returns a new echo stream that gets input from input-stream and sends output
to output-stream.

(make-str ing-input-stream string ftoptional start end) Function
Returns an input stream that, when read from, will yield the characters in string,
then the end of file. The start and end are used as in sequence functions.

(make-string-output-stream &key element-type) Function
Returns an output stream that accepts characters of the type specified by
element-type. Characters written to this stream are not sent anywhere, but
can be retrieved via ge t -ou tpu t - s t ream-s t r ing .

376 APPENDIX D

(make-synonym-stream symbol) Function
Returns a stream that will be a synonym for whatever stream is the value of the
special variable whose name is symbol.

(make-two-way-stream input-stream output-stream) Function
Returns a new two-way stream that gets input from input-stream and sends
output to output-stream.

(open path &key direction element-type if-exists if-does-not-exist Function
external-format)

Opens and returns a stream to path, or possibly n i l if such a stream can't
be created. The keyword arguments determine the properties of the stream as
follows:
: d i r ec t ion symbol

Tells which way objects will flow. Can be: : input (the default) which
means that it will be possible to read from the stream; : output, which
means it will be possible to write to it; : io , which means both; or
: probe, which means that the stream will be returned closed.

: element-type type

Declares the type of objects to be written to or read from the stream.
Yields a character stream if type is a subtype of character; a bi
nary stream if a finite subtype of of integer , or signed-byte or
unsigned-byte (in which case the element size is determined by the
operating system). The default is character .

: i f - e x i s t s symbol

Tells what to do if such a file already exists. The possible values are:
: new-version, the default if the version component of path is : newest;
: er ror , the default otherwise; : rename, which causes the existing file
to be renamed; :rename-and-delete, which causes the existing file to
be renamed and deleted, but not expunged; : overwrite, which causes
the existing file to be modified, starting at the beginning; : append, which
causes the existing file to be modified, starting at the end; : supersede,
which causes a new file with the same name to be created, but the
original file (probably) not to be deleted until the stream is closed; or
n i l , in which case no stream is created and open returns n i l .

: i f - does -no t - ex i s t symbol

Tells what to do if no such file exists. Possible values: : error , the
default if direction is : input or if-exists is : overwrite or : append;
: c rea te , the default if direction is : output or : io and if-exists is
neither : overwrite nor : append; or n i l , the default if direction is
: probe, in which case no stream is created and open returns n i l .

:external-format format

Designates an external file format. The only predefined format is
:defaul t .

STREAMS 377

(open-stream-p stream) Function
Returns true iff stream is open.

(output-stream-p stream) Function
Returns true iff stream is an output stream.

(peek-char &optional kind stream eof-error eof-value recursive) Function
Returns a character from stream without removing it from the stream. If kind
is n i l , returns the first character seen; if t , consumes whitespace characters
and returns the first non-whitespace character; if a character, consumes all
characters up to the first instance of it, then returns it. If the end of file is
encountered, either signals an error or returns eof-value, depending on whether
eof-error is true (the default) or false. The recursive argument will be true if
peek-char was invoked by another input function.

(read-byte stream feoptional eof-error eof-value) Function
Reads a byte from stream, which must be a binary input stream. If there
was a byte to read, returns it; otherwise signals an error or returns eof-value
depending on whether eof-error is true (the default) or false.

(read-char feoptional stream eof-error eof-value recursive) Function
Removes and returns the first character in stream. If the end of file is en
countered, either signals an error or returns eof-value, depending on whether
eof-error is true (the default) or false. The recursive argument will be true if
read-char was invoked by another input function.

(read-char-no-hang feoptional stream eof-error eof-value Function
recursive)

Like read-char, but returns n i l immediately if there are no characters waiting
in stream.

(read-line feoptional stream eof-error eof-value recursive) Function
Returns a string of all the characters up to the first newline (which is read,
but not included) in stream, or the end of file. If no characters are read
before encountering the end of file, either signals an error or returns eof-value,
depending on whether eof-error is true (the default) or false. Returns a second
value true iff the end of file was encountered. The recursive argument will be
true if r ead - l ine was invoked by another input function.

(read-sequence {proseq) feoptional stream fekey start end) Function
Reads elements from stream into proseq, returning the position of the first
unchanged element. The start and end are used as in sequence functions.

(stream-element-type stream) Function
Returns the type of objects that can be written to or read from stream.

(s tream-error-stream condition) Function
Returns the stream involved in the stream-error condition.

(stream-external-format stream) Function
Returns the external file format of stream.

378 APPENDIX D

(streamp object) Function
Returns true iff object is a stream.

(synonym-stream-symbol synonym-stream) Function
Returns the name of the special variable for whose value synonym-stream is a
synonym.

(t e r p r i ^opt ional stream) Function
Writes a newline to stream.

(two-way-stream-input-stream two-way-stream) Function
Returns the input stream of two-way-stream.

(two-way-stream-output-stream two-way-stream) Function
Returns the output stream of two-way-stream.

(unread-char character ftoptional stream) Function
Undoes one read-char on stream. Can't be done twice without a read-char
in between. Can't be done after a peek-char.

(wi th- input- f rom-st r ing {symbol string &key index start end) Macro
declaration * expression *)

Evaluates the expressions with symbol bound to a string input stream made as
if by passing string and the start and end arguments to make-str ing-input-
stream. (There should be no assignments to this variable.) The stream exists
only within the wi th- input- f rom-st r ing expression, and it gets closed
automatically when the wi th- input- f rom-st r ing returns, or is interrupted.
The index can be an expression (not evaluated) that could serve as the first
argument to setf; if wi th- input- f rom-st r ing terminates normally, the
corresponding place will be set to the index of the first unread character in the
string.

(with-open-f i l e {symbol path arg*) declaration* expression*) Macro
Evaluates the expressions with symbol bound to the stream that would result
from passing the path and args to open. (There should be no assignments to
this variable.) The stream exists only within the with-open-f i l e expression,
and it gets closed automatically when the with-open-f i l e returns, or is
interrupted. In the latter case, if the stream was for output, no file should be
left behind.

(with-open-stream {symbol stream) declaration* expression*) Macro
Evaluates the expressions with symbol bound to the value of stream. (There
should be no assignments to this variable.) The stream exists only within the
with-open-stream expression, and it gets closed automatically when the
with-open-stream returns^ or is interrupted.

PRINTER 379

(wi th -ou tpu t - to -s t r ing {symbol [.string] &key element-type) Macro
declaration* expression*)

Evaluates the expressions with symbol bound to a string output stream. The
stream exists only within the with-output—to-string expression, and it
gets closed automatically when the w i th -ou tpu t - t o - s t r i ng returns, or is
interrupted. If no string is given, the w i th -ou tpu t - to - s t r i ng returns a
string containing all the output written to the stream. If a string is given,
it must be a string with a fill-pointer; output is appended to it as if by
vector-push-extend, and the w i th -ou tpu t - to - s t r i ng returns the value
of the last expression.

(write-byte i stream) Function
Writes i to stream, which must be a binary output stream. Returns i.

(write-char character ftoptional stream) Function
Writes character to stream.

(wr i t e - l ine string &optional stream &key start end) Function
Like wr i t e - s t r i ng , but writes a newline afterwards.

(write-sequence proseq ^opt ional stream ftkey start end) Function
Writes the elements of proseq to stream. The start and end are used as in
sequence functions.

(wr i t e - s t r ing string ftoptional stream &key start end) Function
Writes string to stream. The start and end are used as in sequence functions.

(yes-or-no-p ftoptional format &rest args) Function
Like y-or-n-p, but requires an explicit yes or no, instead of a single letter.

(y-or-n-p ^optional format forest args) Function
Displays format, which should be a yes-or-no question but defaults to "", on
query-io as if by calling format with args as the optional arguments.
Then prompts for a single letter, returning true or n i l depending on whether it
corresponds to y or n, or prompting again if given an ambiguous response.

Printer

(copy-pprint-dispatch ftoptional pprint-dispatch) Function
Returns a copy of the pprint dispatch table pprint-dispatch, which defaults
to *pr in t -ppr in t -d ispa tch* . If pprint-dispatch is n i l , copies the initial
value of *pr in t -ppr in t -d i spa tch* .

(format dest format ftrest args) Function
Writes output to a location depending on dest: if it is a stream, to that stream;
if t , to *standard-output*; if n i l , to a string, which is returned. Returns
n i l if it does not return a string. The format can be either a string or the kind
of function that formatter might return. If it is a function, it is applied to the
dest and args. If it is a string, it may contain directives, which typically consist
of a ~, followed by prefix parameters separated from one another by commas,
followed by optional : and (9 modifiers, followed by some distinctive tag. A

380 APPENDIX D

prefix parameter can be: an integer; a character preceded by a single quote;
a V or v, which represent the next argument (or the absence of a parameter
if the argument is n i l) ; or a #, which represents the number of arguments
remaining. Prefix parameters can be omitted (leaving the commas), in which
case they have default values. Trailing commas can also be omitted.
The possible directives are:
~w,g,mtpk

Prints the next argument as if by princ, padded on the right (or left, with
<3) by at least m (default: 0) instances of p (default: #\Space), plus more
instances of p added in groups of g (default: 1) until the total number of
characters (including the representation of the argument) is w (default: 0)
or more. With :, empty lists are printed as 0 instead of n i l .

"wtg,m,pS

Like "A, but prints the argument as if by p r i n l .

"W

Prints the next argument as if by wri te . With :, pretty-prints. With Q,
prints without limits on list length or nesting.

~C

The next argument should be a character. If a simple character, it will be
printed as by wri te-char . With :, non-printing characters are spelled
out; : Q is similar but also explains how to type unusual characters. With
@, characters are printed using #\ syntax.

Prints n (default: 1) newlines.

Like ""/„ but the first newline is printed as if by f resh- l ine .

~n\

Prints n (default: 1) page separators.

~n~

Prints n (default: 1) ~s.

The next argument should be an integer. It is printed in base r (de
fault: 10), padded on the left by as many ps (default: #\Space) as
needed to make the total number of characters at least w. With :, groups
of i (default: 3) digits are separated by instances of c (default: # \ ,) . With
Q, the sign is printed even for positive numbers.
If none of the prefix arguments are given, ~R has a completely different
interpretation—it displays integers in various non-digital forms. With
no modifiers, 4 is printed as four; with :, as fourth; with Q, as IV; and
with :<9, as I I I I .

PRINTER 381

Displays an integer in decimal. Equivalent to ~ 10, w ,p, c, /R.

Displays an integer in binary. Equivalent to ~ 2, w ,p, c, JR.

~w,p,c,i0

Displays an integer in octal. Equivalent to "8,w,p,c,iK.

~w,p,c,il

Displays an integer in hexadecimal. Equivalent to ~16,w>,/?,c,/R.

~w,d,syx,pF

If the next argument is a rational, it will be printed as a floating-point
number, shifted s digits to the left (default: 0), with d digits (default: as
many as needed) after the decimal point. The number may be rounded to
fit, but it is implementation-dependent whether up or down. If w is given,
the number will be padded on the left by as many ps (default: #\Space)
are needed to make the total number of characters equal to w. (If the
representation of the number is already more than w characters, and an x
is given, it is printed instead.) If both w and d are omitted, s is ignored.
With @, the sign is printed even for positive numbers.

Like ~F, but if the next argument is a rational, it will be printed as a
floating-point number in exponential notation, with s (default: 1) digits
before the decimal point, d digits (default: as many as needed) after it,
and e (default: as many as needed) digits in the exponent. The m, if
given, should be a character to use as the exponent marker.

~w,d,e,s,x,p,mG

If the next argument is a rational number, it is printed using either ~F or
"E as appropriate based on its magnitude.

~d,n,w,p$

Intended for displaying amounts of money. If the next argument is a
rational, it will be printed as a floating-point number with at least n
(default: 1) digits before the decimal point, and d digits (default: 2) after
it. At least w (default: 0) characters must be printed; if necessary the
number will be padded on the left by ps (default: #\Space). With ©,
the sign is printed even for positive numbers. With :, the sign is printed
before any padding.

Like a call to pprint-newline with an argument that depends on the
modifiers: none means : l i nea r ; 0 means : miser; : means : f i l l ; and
:® means :mandatory.

382 APPENDIX D

~<preftx~; body"; suffix": >

Like a call to pp r in t - log ica l -b lock with the next argument as the list
argument, the prefix and suffix as the : pref ix (or : pe r - l ine-pre f ix if
followed by ~<3;) and : suffix arguments, and the body playing the role
of the expressions in the body. The body can be any format string, and
arguments for it are extracted from the list argument as by pprint-pop.
Within body, the ~~ stands for p p r i n t - e x i t - i f - l i s t -exhaus ted . If
only two of prefix, body, and suffix appear, the suffix defaults to ""; if
only one of the three appears, the prefix defaults to " " as well. With the :
modifier, the,prefix and suffix default to " ('* and ") " respectively. With
<9, the list of remaining arguments becomes the argument to the logical
block. If the whole directive ends with ~ :0>, then a :f i l l conditional
newline is inserted after each group of blanks in the body.

"nl

Equivalent to (pprint-indent : block n). With :, (pprint -indent
:current n).

"/name/

Calls the function whose name is name with at least four arguments: the
stream, the next argument, a value that is true if : was used, and a value
that is true if @ was used—plus any parameters given to the directive.

"m,nT

Prints enough spaces to put the cursor in column m (default: 1), or if it
is already past that column, into the nearest column that is a multiple
of n (default: 1) columns past column m. With @, prints m spaces, then
enough spaces to put the cursor in a column that is a multiple of n. With
:, equivalent to (pp r in t - t ab : sec t ion m n). With :@, equivalent
to (pp r in t - t ab : s e c t i o n - r e l a t i v e m n).

"w,n,m,p<+textO";. ..~;textn">

Displays the characters produced by the texts justified in a field w
characters wide, with at least m (default: 0) extra instances of p (de
fault: #\Space) introduced between the texts as necessary. If the width
of the output with the minimum padding is greater than w, the limit is
incremented by n until it will fit. With :, there will also be padding
before the first text; with @, after the last. A " * within any text terminates
processing of the directive.

If textO is followed by "a,b:; instead of ~;, the characters yielded by
textO will be output only if the remaining characters are more than b
(default: the stream's line width, or 72) with a (default: 0) characters to
spare.

"n*

Ignores the next n (default: 0) arguments. With :, backs up n arguments.
With @, makes the nth argument (zero-indexed) the current one.

PRINTER 383

~i [textO";... ~; textn"]

Yields the text produced by texti. If i is not specified, the value of the
next argument is used. If the last text is preceded by " : ; instead of ~;,
then the last text is used if no other is selected. With a :, only two texts
are expected: the second is used if the next argument is true, the first
otherwise. With @, only one text is expected: if the next argument is true,
the characters generated by the text are output and the argument remains
for the next directive.

~n{text~}

Like repeated calls to to format, with "text" as the string and the
elements of the next argument, which should be a list, as arguments.
Continues until the elements run out, or after n repetitions (default: no
limit), whichever comes first. If the directive ends with ~:} instead of
" } , there will be at least one call to format, unless n is 0. If there is
no text, the next argument (which must be a string) is used in place of
it. A """ within the text terminates processing of the directive. With :,
the argument should be a list of lists, and the elements of each become
the arguments in successive calls to format. With <3, instead of the next
argument, the list of all the remaining arguments is used.

~?

Equivalent to a call to format with the next argument as the string and
the argument after that as a list of arguments. With 0, the next argument
is used as the string, but arguments are taken from the arguments in the
current call to format.

"(text")

Prints text with case conversion, depending on the modifier: with none,
converts all uppercase characters to lowercase; with : converts the first
letter of each word to uppercase; with 9, capitalizes the first letter of the
first word and converts the rest to lowercase; and with : @, converts all
lowercase characters to uppercase.

If the next argument is eql to 1 prints nothing, otherwise prints s; with
:, backs up by one argument first. With <9, if the next argument is eql
to 1 prints y, otherwise prints ies ; with :@, backs up by one argument
first.

"a,b,c~

Terminates the format (or the current directive, if used within one) under
the following circumstances: if no prefix parameter is given; if one is
given and it is zero; if two are given and they are equal; or if all three are
given and (<= a b c).

384 APPENDIX D

If a ~ is followed by a newline, the newline and any whitespace following
it are ignored. With Q, the newline is ignored but not the whitespace.

(formatter string) Macro
Returns a function that takes a stream and a rest argument, and applies format
to the stream, format, and the rest argument, returning any leftover elements of
the rest argument.

(ppr int object ftoptional stream) Function
Like p r in t , but tries to indent its output nicely, and prints no final space.

(ppr in t -d i spa tch object ftoptional pprint-dispatch) Function
Returns the highest priority function in pprint-dispatch for which object is
of the associated type. If pprint-dispatch is not supplied, uses the current
value of *pr in t -ppr in t -d i spa tch* ; if n i l , uses its initial value. If no
type in the dispatch table matches object, returns a function that prints it using
p r in t -ob jec t . Returns a second value true iff the first comes from a dispatch
table.

(p p r i n t - e x i t - i f - l i s t - e x h a u s t e d) Macro
For use within a ppr in t - log ica l -b lock . Terminates the block if there is
nothing left to print; otherwise returns n i l .

(p p r i n t - f i l l stream object ftoptional colon at) Function
Prints object to stream—in a distinctive way if it is a list and *pr in t -p re t ty*
is true. Prints as many elements of the list on a line as possible, surrounded by
parentheses iff colon is true (the default). The at argument is ignored. Returns
n i l .

(ppr in t - indent keyword r ^opt ional stream) Function
If stream was created by pp r in t - log ica l -b lock and *pr in t -p re t ty*
is true, sets the indentation in the current logical block. If the keyword is
: current , the indentation is set to the current position plus r ems; if : block,
to the position of the first character in the current block plus r ems.

(p p r i n t - l i n e a r stream object ^opt ional colon at) Function
Like p p r i n t - f i l l , but prints the whole list on one line, or each element on
its own line.

(pp r in t - log ica l -b lock (symbol object Macro
&key prefix per-line-prefix suffix)
declaration* expression*)

Evaluates the expressions with symbol bound to a new stream (valid only within
the pp r in t - log ica l -b lock expression) that sends output to the original
value of symbol (which should be a stream). All output sent to the new stream
is in the logical block associated with it. The expressions should not have
side-effects on the surrounding environment.

The object should be a list that the expressions will print: if not, it is printed
by wri te ; if so, its elements will be available by calling pprint-pop. When

PRINTER 385

the list is printed, shared and deeply nested components will be displayed as
dictated by * p r i n t - c i r c l e * and *pr in t - l eve l* .

The keyword arguments, if given, should evaluate to strings. The prefix will
be printed before the logical block, the suffix after it, and the per-line-prefix
before each line of it. The prefix and per-line-prefix are exclusive.

(pprint-newline keyword ftoptional stream) Function
If stream was created by pp r in t - log ica l -b lock and * p r i n t - p r e t t y * is
true, writes a newline to stream depending on the keyword: : mandat ory means
always; : l inea r , if what the pretty printer wants to print on the current line
won't fit; .-miser, if the preceding and miser style is in effect; . - f i l l if the
preceding, or either the previous or next lines have to be broken.

(pprint-pop) Macro
Used within ppr in t - log ica l -b lock . If elements of the list being printed in
the current logical block remain to be printed, returns the next element. If the
remainder of the list is a non-nil atom, prints this atom preceded by a period,
and returns n i l . If *pr in t - length* is true and that many elements have
already been printed, prints an ellipsis and returns n i l . If * p r i n t - c i r c l e *
is true and the remainder of the list is shared structure, prints a period followed
by #n#, and returns n i l .

(ppr in t - t ab keyword il i2 ^opt ional stream) Function
If stream was created by pp r in t - log ica l -b lock and *p r in t -p r e t t y*
is true, tabs as if by the ~T format directive, with il and i2 as the pre
fix parameters. The possible keywords correspond to the variations of "T:
: l i ne means *T, rsect ion means ":T, : l i n e - r e l a t i v e means "®T, and
: s e c t i o n - r e l a t i v e means ":QT.

(ppr in t - t abu la r stream object ^opt ional colon at tab) Function
Like pp r in t - f i l l , but prints the elements of a list so that they line up in
columns. The tab (default: 16) is the intercolumn spacing in ems.

(princ object ftoptional stream) Function
Displays object on stream in a way that allows it to be read by people, if
possible. No escape characters are displayed.

(p r i n c - t o - s t r i n g object) Function
Like princ, but sends its output to a string, which it returns.

(pr in t object ^opt ional stream) Function
Like p r in l , but prints a newline first and a space afterward.

(p r in t -ob jec t object stream) Generic Function
Called by the system to print object on stream.

(pr in t -no t - readable -objec t condition) Function
Returns the object that could not be printed readably in condition.

386 APPENDIX D

(pr in t -unreadable-objec t {object stream &key type identity) Macro
expression*)

For displaying objects in #<.. .> syntax. All arguments are evaluated. Writes
#< to stream; then, if type is true, writes a type label for object, then evaluates
the expressions, which should display object on stream; then, if identity is true,
writes an identifying tag for object; finally writes >. Returns n i l .

(p r in l object ftoptional stream) Function
Displays object on stream in a way that allows it to be read by read, if possible.

(p r i n l - t o - s t r i n g object) Function
Like p r in l , but sends its output to a string, which it returns.

(s e t -pp r in t -d i spa t ch type function &optional r pprint-dispatch) Function
If function is true, adds an entry to pprint-dispatch (which defaults to *pr in t -
ppr in t -d ispatch*) with the given type, function, and a priority of r (de
fault: 0). The function must take two arguments: a stream and an object to be
printed on it. If function is n i l , removes any entry for type. Returns n i l .

(wri te object &key array base case circle escape gensym length Function
level lines miser-width pprint-dispatch pretty
radix readably right-margin stream)

Writes object to stream with each special variable * p r i n t - . . . * bound to the
value of the corresponding keyword parameter.

(w r i t e - t o - s t r i n g object &key . . .) Function
Like wri te , but sends its output to a string, which it returns.

Reader

(copy-readtable feoptional from (to)) Function
If to is n i l returns a copy of the readtable from (default: *readtable*); if to
is a readtable, returns it after copying from into it.

(get -dispatch-macro-character charl char2 Function
ftoptional readtable)

Returns the function (or n i l if there isn't one) that is called in readtable when
charl is followed by charl in the input.

(get-macro-character char ftoptional readtable) Function
Returns two values: the function (or n i l if there isn't one) that is called in
readtable when char is encountered in the input, and a second value true iff
char can be read as part of a symbol name.

(make-dispatch-macro-character char feoptional nonterm Function
readtable)

Makes char a dispatching macro character in readtable. If nonterm is true,
char behaves like a normal character when used in the middle of a symbol.
Returns t .

READER 387

(read ftoptional stream eof-error eof-value recursive) Function
Parses one Lisp object from stream and returns it. If the end of file is en
countered, either signals an error or returns eof-value, depending on whether
eof-error is true (the default) or false. The recursive argument will be true if
read was invoked by another input function.

(r ead -de l imi t ed - l i s t char ftoptional stream recursive) Function
Like read, but continues parsing objects from stream until it encounters char,
whereupon it returns a list of all the objects parsed. Signals an error if no char
before the end of file.

(read-from-str ing string &optional eof-error eof-value Function
&key start end preserve-whitespace)

Like calling read on a stream containing the characters in string. Returns two
values: the object parsed and the position (zero-indexed) of the first unread
character in string. The start and end delimit the string as usual. If preserve-
whitespace is true, like read-preserving-whitespace rather than read.

(read-preserving-whitespace feoptional stream eof-error Function
eof-value recursive)

Like read, but leaves terminating whitespace in stream.

(readtable-case readtable) Function
Returns one of rupcase, :downcase, : preserve, or : inver t , depending on
how readtable is set to handle case in the input. Settable.

(readtablep object) Function
Returns true iff object is a readtable.

(set -dispatch-macro-character charl char2 function Function
ftoptional readtable)

Inserts an entry in readtable that says function is to be called when the reader
sees charl followed by char2 (which is converted to uppercase and may not
be a decimal digit). The function should be a function of three arguments, the
input stream, charl, and char2, which returns either no value or an object read
from the stream. Returns t .

(set-macro-character char function Function
fcoptional nonterm readtable)

Inserts an entry in readtable that says function is to be called when the reader
sees char. The function should be a function of two arguments, the input stream
and char, which returns either no value or an object read from the stream. If
nonterm is true, the char behaves like a normal character when used in the
middle of a symbol. Returns t .

(set-syntax-from-char to-char from-char Function
to-readtable from-readtable)

Gives to-char the syntactic properties in to-readtable (default: *readtable*)
that from-char has in from- readtable (which defaults to the standard readtable).
Returns t .

388 APPENDIX D

(wi th-s tandard- io-syntax expression*) Macro
Evaluates the expressions with all the special variables that control reading and
printing (i.e. those whose names begin with *read- or *pr in t -) bound to
their initial values.

System Construction

(compile-f i le path &key output-file verbose print external-format) Function
Compiles the contents of the file denoted by path and writes the result to the file
denoted by the pathname output-file. If verbose is true, this fact is announced
to *standard-output*. If print is true, information about top-level forms
in the file is printed to *standard-output*. The default external-format
(: defaul t) is the only predefined external format. After the file is compiled,
• read tab le* and *package* are restored to their original values. Returns
three values: the name of the output file (or n i l if the file could not be written);
a second true iff compilation generated errors or warnings; and a third true iff
compilation generated errors or warnings other than style warnings.

(compile-file-pathname path &key output-file) Function
Returns the name of the output file that compile-f i le would create if given
the same arguments. Allows other keys.

(load path &key verbose print if-does-not-exist external-format) Function
Loads the file denoted bypath. If the file is a source file, like evaluating each ex
pression in order; similar if acompiled file, except that compiled-function-p
will return true of functions defined in the file. If verbose is true, announces
the loading of the file to *standard-output*. If print is true, describes the
loading as it progresses to *standard-output*. If if-does-not-exist is true
(the default), signals an error if the file does not exist; if it is n i l , returns n i l .
The default external-format (: defaul t) is the only predefined external format.
Returns true if the file is loaded.

(provide name) [Function]
Adds the string name (or its name, if it is a symbol) to *modules*.

(requi re name ^opt ional paths) [Function]
If the string name (or its name, if it is a symbol) is not in *modules*, tries
to load the file containing the corresponding module. If paths is given, it
should be a list whose elements are pathnames, streams, or strings, and the
corresponding files will be loaded.

(with-compilat ion-uni t ([: ove r r ide vaQ) expression*) Macro
Evaluates the expressions. Any warnings deferred by the compiler until the
end of the file will be deferred until after the last expression is evaluated. A
dynamically nested with-compilat ion-uni t has an effect only the value of
val is true.

ENVIRONMENT 389

Environment

(apropos name ftoptional package) Function
Prints information about each interned symbol whose name contains name as
a substring (or the name of name, if it is a symbol). If package is given, only
that package is searched. Returns no value.

(apropos- l i s t name ftoptional package) Function
Like apropos, but prints nothing and returns the symbols in a list.

(decode-universal—time i ^opt ional time-zone) Function
Interprets i as a number of seconds since 0:00:00 (GMT), January 1, 1900,
returning nine values: the second, minute, hour, date, month (1 = January),
year, day of the week (0 = Monday), a value true iff daylight saving time is in
effect, and a rational indicating the time zone as an offset from GMT. The time-
zone should be a rational divisible by 3600 and between -24 and 24 inclusive;
if a time zone is given explicitly, daylight saving time is not considered.

(describe object ftoptional stream) Function
Writes a description of object to stream. Returns no value.

(describe-object object ftoptional stream) Generic Function
Called by descr ibe to describe object on stream.

(disassemble fn) Function
Prints an indication of the object code generated foryh, which can be a function,
a function name, or a lambda expression.

(documentation object symbol) Generic Function
Returns the symbol documentation of object, or n i l if there is none. Settable.

(dr ibble ftoptional path) Function
If path is given, begins sending a transcript of the Lisp session to the file it
denotes; if there is no argument, closes the file.

(ed ftoptional arg) Function
Invokes the editor, if there is one. If arg is a pathname or a string, it indicates
the file to be edited; if a function name, its definition is edited.

(encode-universal-t ime second minute hour date month year Function
&optional time-zone)

Like decode-universal- t ime in reverse.

(get-de coded-time) Function
Equivalent to (decode-universal-t ime (ge t -un ive r sa l - t ime)) .

(ge t - i n t e rna l - r ea l - t ime) Function
Returns the current system time in clock ticks, of which there are i n t e r n a l -
t ime-uni ts-per-second per second.

(ge t - in te rna l - run- t ime) \ Function
Like g e t - i n t e r n a l - r e a l - t i m e , but the return value is supposed to indicate
something like the number of ticks used by the Lisp process.

390 APPENDIX D

(ge t -universa l - t ime) Function
Returns the current time as a number of seconds since 0:00:00 (GMT), January
1, 1900.

(inspect object) Function
An interactive version of descr ibe that allows one to traverse complex objects.

(l isp- implementat ion-type) Function
Returns a string indicating the Lisp implementation, or n i l .

(l isp- implementat ion-vers ion) Function
Returns a string indicating the Lisp version number, or n i l .

(long-site-name) Function
Like short -s i te-name, but verbose.

(machine-instance) Function
Returns a string indicating the particular computer on which this Lisp session
is running, or n i l .

(machine-type) Function
Returns a string indicating the general type of computer on which this Lisp
session is running, or n i l .

(machine-vers ion) Function
Returns a string indicating the version of computer on which this Lisp session
is running, or n i l .

(room feoptional (arg -.default)) Function
Prints an indication of state of memory. Terse if arg is n i l ; verbose if t .

(shor t -s i te-name) Function
Returns a string indicating the current physical site, or n i l .

(s leep r) Function
Causes evaluation to pause for r seconds.

(software-type) Function
Returns a string indicating the general type of the underlying software (e.g. OS),
or n i l .

(software-version) Function
Returns a string indicating the version of the underlying software, or n i l .

(s tep expression) Macro
Steps through the evaluation of expression, returning whatever value(s) it re
turns.

(time expression) Macro
Evaluates expression, returning whatever value(s) it returns, and also printing
information to *t race-out put* about how long it took to return.

(t race fname*) Macro
Causes calls to the named functions to be announced to *trace-output*.
May not work for functions compiled inline. Given no arguments, returns a
list of the functions currently being traced.

CONSTANTS AND VARIABLES 391

(untrace fname*) Macro
Undoes a call to t race . Given no arguments, untraces all traced functions.

(user-homedir-pathname &optional host) Function
Returns the pathname of the user's home directory, or n i l if no home directory
can be found on host. The host argument is used as by make-pathname.

Constants and Variables

array-dimension-limit Constant
Positive fixnum one greater than the maximum number of elements there may
be in any one dimension of an array. Implementation-dependent, but at least
1024.

a r ray- rank- l imi t Constant
Positive fixnum one greater than the maximum number of dimensions an array
may have. Implementation-dependent, but at least 8.

a r r a y - t o t a l - s i z e - l i m i t Constant
Positive fixnum one greater than the maximum number of elements an array
may have. Implementation-dependent, but at least 1024.

boole-1 . . .boole-xor Constants
Positive integers for use as the first argument to boole.

break-on-signals Variable
A generalization of the old *break-on-warnings*. Its value should be a
type specifier. Whenever a condition of that type is signalled, the debugger is
invoked. Initially n i l .

cal l -arguments- l imit Constant
Positive integer one greater than the maximum number of arguments in a
function call. Implementation-dependent, but at least 50.

char-code-l imit Constant
Positive integer one greater than the maximum value returned by char-code.
Implementation-dependent.

compile-file-pathname Variable
During the evaluation of a call to compile-f i l e , the pathname made from the
first argument; otherwise n i l .

compile-file-truename Variable
The truename of *compile-f ile-pathname*.

•compile-print* Variable
The default for the : p r i n t argument to compile-f i l e . Initial value is
implementation-dependent.

•compile-verbose* Variable
The default for the : verbose argument to compile-f i l e . Initial value is
implementation-dependent.

392 APPENDIX D

debug-io Variable
Stream intended for interactive debugging.

•debugger-hook* Variable
If non-nil, should be a function/of two arguments. When the debugger is about
to be invoked,/will be called with the condition and/itself as arguments. If
/returns normally, the debugger will be invoked. During the invocation of/,
debugger-hook will be bound to n i l .

•defaul t-pathname-defaul ts* Variable
Used as the default value when a function like make-pathname is not given a
: defau l t s argument.

s h o r t - f l o a t - e p s i l o n Constant
s i n g l e - f l o a t - e p s i l o n Constant
double - f loa t -eps i lon Constant
l ong- f loa t - eps i lon Constant

For each type of float, the smallest positive number in that format which, if
added to 1.0 in the same format, yields a result not - to 1.0. Implementation-
dependent.

short - f l o a t -negat ive-eps i l on Constant
s i ng l e - f loa t -nega t ive -eps i lon Constant
double- f loa t -nega t ive-eps i lon Constant
long- f loa t -nega t ive -eps i lon Constant

For each type of float, the smallest positive number in that format which, if sub
tracted from 1.0 in the same format, yields a result not = to 1.0. Implementation-
dependent.

•e r ro r -ou tpu t* Variable
Stream on which error messages are printed.

• f ea tu res* Variable
An implementation-dependent list of symbols representing features supported
by the current implementation. Such symbols can be used as the test component
in #+ and #-.

•gensym-counter* Variable
A non-negative integer used by gensym to make symbol names. Initial value
is implementation-dependent.

in te rna l - t ime-un i t s -pe r - second Constant
If the difference between two calls to g e t - i n t e r n a l - r e a l - t i m e is divided
by this integer, the result will represent the number of seconds of system time
between them.

lambda-list-keywords Constant
A list of all the parameter list keywords (e.g. ftoptional, ferest, etc.) sup
ported by the implementation.

lambda-parameters-limit Constant
Positive integer one greater than the maximum number of variables in a pa
rameter list. Implementation-dependent, but at least 50.

CONSTANTS AND VARIABLES 393

l ea s t -nega t i ve - sho r t - f l oa t Constant
l e a s t -nega t i ve - s ing l e - f l oa t Constant
l eas t -nega t ive-double- f loa t Constant
l eas t -nega t ive - long- f loa t Constant

The negative floating-point number of smallest magnitude in each of the float
formats. Implementation-dependent.

l eas t -nega t ive-normal ized-shor t - f loa t Constant
l eas t -nega t ive-normal ized-s ing le - f loa t Constant
leas t -negat ive-normal ized-double-f loat Constant
leas t -negat ive-normal ized- long-f loa t Constant

The negative normalized floating-point number of smallest magnitude in each
of the float formats. Implementation-dependent.

l e a s t - p o s i t i v e - s h o r t - f l o a t Constant
l e a s t - p o s i t i v e - s i n g l e - f l o a t Constant
l ea s t -pos i t i ve -doub le - f loa t Constant
l e a s t - p o s i t i v e - l o n g - f l o a t Constant

The positive floating-point number of smallest magnitude in each of the float
formats. Implementation-dependent.

l ea s t -pos i t ive -normal i zed - shor t - f loa t Constant
l ea s t -pos i t ive -norma l i zed - s ing le - f loa t Constant
l eas t -pos i t ive-normal ized-double- f loa t Constant
l eas t -pos i t ive -normal ized- long- f loa t Constant

The positive normalized floating-point number of smallest magnitude in each
of the float formats. Implementation-dependent.

•load-pathname* Variable
During the evaluation of a call to load, the pathname made from the first
argument; otherwise n i l .

• load-pr in t* Variable
Used as the default value of the : p r i n t argument to load. Initial value is
implementation-dependent.

load-truename Variable
The truename of *load-pathname*.

•load-verbose* Variable
Used as the default value of the : verbose argument to load. Initial value is
implementation-dependent.

macroexpand-hook Variable
A function of three arguments—an expansion function, a macro call, and an
environment—that is called by macroexpand-1 to generate macro expansions.
Its initial value is a function equivalent to f uncal l , or the name of such a
function).

•modules* Variable
A list of strings built by calls to provide.

394 APPENDIX D

most-negative-f ixnum Constant
The lowest possible fixnum. Implementation-dependent.

mos t -nega t ive-shor t - f loa t Constant
mos t -nega t ive-s ing le - f loa t Constant
most-negat ive-double-f loat Constant
most-negat ive- long-f loat Constant

The negative floating-point number of greatest magnitude in each of the float
formats. Implementation-dependent.

most-positive-fixnum Constant
The highest possible fixnum. Implementation-dependent.

mos t -pos i t ive - shor t - f loa t Constant
mos t -pos i t i ve - s ing le - f loa t Constant
most -pos i t ive-double- f loa t Constant
mos t -pos i t ive- long- f loa t Constant

The positive floating-point number of greatest magnitude in each of the float
formats. Implementation-dependent.

mul t ip le -va lues - l imi t Constant
Positive integer one greater than the maximum number of return values.
Implementation-dependent, but at least 20.

n i l Constant
Evaluates to itself. Represents false and the empty list.

•package* Variable
The current package. Initially common-lisp-user.

p i Constant
A long-float approximation of IT.

• p r i n t - a r r a y * Variable
If true, arrays will be printed in a readable form. Initial value is implementation-
dependent.

•p r in t -base* Variable
An integer between 2 and 36 inclusive that determines the base in which
numbers are printed. Initial value is 10 (decimal).

• p r i n t - ca se* Variable
Controls the printing of ordinary all-uppercase symbol names. The three
possible values are: : up case (the initial value), which yields all uppercase;
:downcase, which yields all lowercase; and : c ap i t a l i z e , which prints sym
bol names as if returned by s t r i n g - c a p i t a l i z e .

• p r i n t - c i r c l e * Variable
If true, shared structure will be displayed using the #«= and #«# read-macros.
Initial value is n i l .

• p r i n t -escape* Variable
If n i l , everything is printed as if by pr inc. Initially t .

CONSTANTS AND VARIABLES 395

•print-gensym+ Variable
If true, #: is printed before unintemed symbols. Initially t .

•p r in t - l eng th* Variable
Either n i l (the initial value) or a positive integer. If an integer, up to that many
elements of an object will be displayed, the rest being elided. If n i l , there is
no limit.

• p r i n t - l e v e l * Variable
Either n i l (the initial value) or a positive integer. If an integer, objects nested
up to that depth will be displayed, the rest being elided. If n i l , there is no
limit.

• p r i n t - l i n e s * Variable
Either n i l (the initial value) or a positive integer. If an integer, only that many
lines will be shown when an object is pretty-printed, the rest being elided. If
n i l , there is no limit.

•pr int-miser-width* Variable
Either n i l or a positive integer. If an integer, pretty-printer prints in a compact
style if fewer ems are available. Initial value is implementation-dependent.

•p r in t -ppr in t -d i spa tch* Variable
Either n i l or a pprint dispatch table. If the latter, it controls pretty-printing.
Initial value is a table that yields conventional output.

• p r i n t - p r e t t y ^ Variable
When true, objects will be pretty-printed. Initial value is implementation-
dependent.

•p r in t - r ad ix* Variable
If true, numbers will be printed with an indication of the radix in which they
are displayed. Initial value is n i l .

•pr in t - readably • Variable
If true, the printer must either generate readable output, or signal an error.
Initially n i l .

•pr in t - r ight -margin* Variable
Either n i l (the initial value) or a positive integer representing a number of
ems. If an integer, nothing will be printed past it; if n i l , the right margin is set
by the output stream.

•query-io* Variable
Stream on which to ask for and receive user input.

•random-stated Variable
An object representing the state of Common Lisp's random number generator.

•read-base* Variable
An integer between 2 and 36 inclusive that determines the base in which
numbers are read. Initial value is 10 (decimal).

396 APPENDIX D

read-defaul t - f loa t - format Variable
Indicates the default format for floats made by read. Must be a type-specifier
for one of the types of float. Initial value is s ing le - f loa t .

read-eval Variable
If nil, #. signals an error. Initially t .

• read-suppress* Variable
If true, read becomes more accepting of syntactic diversity. Initially n i l .

• read tab le* Variable
The current readtable. Initially a readtable defining standard Common Lisp
syntax.

•s tandard- input* Variable
Default input stream.

•s tandard-output* Variable
Default output stream.

t Constant
Evaluates to itself. Represents true.

• t e rmina l - io^ Variable
A stream representing the console, if there is one.

• t race-ou tpu t* Variable
A stream on which traces are to be displayed.

* ** *** Variables
The first value returned by the last, next to last, and third to last expressions
entered at the toplevel.

+ ++ +++ Variables
The last, next to last, and third to last expressions entered at the toplevel.

Variable
During the evaluation of an expression at the toplevel, that expression.

/ / / / / / Variables
List of the values returned by the last, next to last, and third to last expressions
entered at the toplevel.

Type Specifiers

Type specifiers can be simple or compound. A simple type specifier is a symbol that
is the name of a type (e.g. integer) . A compound type specifier is a list of a symbol
followed by one or more arguments. This section lists the possible compound type
specifiers.

(and type*) type Specifier
Denotes the intersection of the types.

TYPE SPECIFIERS 397

(array type dimensions) Type Specifier
(simple-array type dimensions') Type Specifier

Denote the set of arrays whose : element-type is type, and with dimensions
matching dimensions. If dimensions is a non-negative integer, it indicates the
number of dimensions; if a list, the size of each dimension, as if in a call to
make-array. Using simple-array restricts the set to simple arrays. A *
appearing as the type or part of the dimensions indicates no restriction in that
respect.

(base-s t r ing i) Type Specifier
(s imple-base-s t r ing 0 Type Specifier

Equivalent to (vector base-charac ter i) and (s imple-array base-
character (0) respectively.

(b i t -vec to r i) Type Specifier
(s imple-bi t -vector 0 Type Specifier

Equivalent to (array b i t (/)) and (simple-array b i t (0) respectively.

(complex type) Type Specifier
Denotes the set of complex numbers whose real and imaginary parts are reals
of type type.

(cons typel type2) Type Specifier
Denotes the set of conses whose cars are of typel and cdrs of type2. A * in
either position is equivalent to t .

(eql object) Type Specifier
Denotes a set of one element: object.

(f loat min max) Type Specifier
(shor t - f loa t min max) Type Specifier
(s ing le - f loa t min max) Type Specifier
(double-float min max) Type Specifier
(long-f loat min max) Type Specifier

Denotes the set of floats of the designated type with values between min and
max. The min and max may be either/ (inclusive limit) or (f) (exclusive
limit), where/is a float of the designated type; or *, which indicates no limit
in that direction.

(function parameters type) Type Specifier
For use only in declarations. Denotes the set of functions whose arguments
can be of the types indicated by parameters, and which return value(s) of type
type. The parameters has the same form as a parameter list, but with variable
names replaced by type specifiers, and keyword parameter types indicated by
lists of the form (key type). A type specifier following ftrest indicates the
type of the remaining arguments, not the type of the rest parameter, which is
always l i s t . (See the values type specifier.)

(in teger min max) Type Specifier
Like f loa t , but for integers.

398 APPENDIX D

(member object*) Type Specifier
Denotes the set of the objects.

(mod 0 Type Specifier
Denotes the set of integers less than i.

(not type) Type Specifier
Denotes the complement of the type.

(or type*) Type Specifier
Denotes the union of the types.

(r a t i o n a l min max) Type Specifier
Like f loa t , but for rationals.

(r ea l min max) Type Specifier
Like f loa t , but for reals.

(s a t i s f i e s symbol) Type Specifier
Denotes the set of all objects that satisfy the function of one argument whose
name is symbol.

(signed-byte i) Type Specifier
Denotes the set of integers between — X~x and 2*-1 — 1 inclusive. Equivalent
to in teger if i is *.

(s t r i n g i) Type Specifier
(s imple-s t r ing i) Type Specifier

Denote the set of strings and simple strings, respectively, of length i.

(unsigned-byte i) Type Specifier
Denotes the set of non-negative integers less than 2 \ If / is *, equivalent to
(in teger 0 *) .

(values . parameters) Type Specifier
For use only in function type specifiers and the expressions. Denotes the
set of series of values that could be passed in a mul t ip le -va lue -ca l l to a
function of type (function parameters).

(vector type i) Type Specifier
(s imple-vector i) Type Specifier

Equivalent to (array type (0) and (simple-array t U)) respectively.
Note that a simple vector is not merely a simple array with one dimension; a
simple vector must also be able to hold objects of any type.

READ MACROS 399

Read Macros
The single-character read-macros are (,), \ ;, and ' . All predefined dispatching
read-macros have # as the dispatching character. They are:

' /
(. . .)
#n(. . .)

**bbb
tn*bbb

t:sym
#. expr
tKddd
#0ddd
tlddd
tnMdd

#C(ab)
tnkexpr

tSisym...)

t?expr
tn=expr

tnt
t+test expr
it-test expr

#<

Denotes the character c.
Equivalent to (function /) .
Denotes a simple vector.
Denotes a simple vector of n elements. If fewer given, remaining
positions filled with the last.
Denotes a simple bit-vector.
Denotes a simple bit-vector of n elements. If fewer given, remaining
positions filled with the last.
Yields a new uninterned symbol whose name is that of sym.
Yields the value of expr at read-time.
Binary number.
Octal number.
Hexadecimal number.
Number in base n, which must be a decimal integer between 2 and 36
inclusive.
Denotes the complex number a+bi.
Denotes an ^-dimensional array, made as if 'expr were the initial-
contents argument in a call to make-array.
Yields a structure of the type named sym in which each field contains
the corresponding value, and unspecified fields default as if in a call
to the constructor function.
Yields the value of (parse-namestring ' expr).
Equivalent to expr, but for the remainder of the outermost expression
being read, the object yielded by expr is labelled as n.
Yields the object labelled as n.
If test succeeds, equivalent to expr, otherwise to whitespace.
If test fails, equivalent to expr, otherwise to whitespace.
Comment; ignored by the reader.
Causes an error.

Backquote is easiest to understand if we define it by saying what a backquoted
expression returns.0 To evaluate a backquoted expression, you remove the backquote
and each matching comma, and replace the expression following each matching
comma with its value. Evaluating an expression that begins with a comma causes an
error.

A comma matches a backquote if there are the same number of commas as
backquotes between them, where b is between a and c if a is prepended to an expression
containing b, and b is prepended to an expression containing c. This means that in a
well-formed expression the outermost backquote matches the innermost comma(s).

Suppose that x evaluates to a, which evaluates to 1; and that y evaluates to b,
which evaluates to 2. To evaluate the expression

" (v ,x , ,y)

400 APPENDIX D

we remove the first backquote and evaluate what follows any matching comma. The
rightmost comma is the only one that matches the first backquote. If we remove it and
replace the expression it's prepended to, y, with its value, we get:

'(w ,x ,b)

In this expression, both of the commas match the backquote, so if we were to evaluate
it in turn, we would get:

(w a 2)

A comma-at (, Q) behaves like a comma, except that the expression it's prepended
to must both occur within and return a list. The elements of the returned list are then
spliced into the containing list. So

" (w ,x , ,@(l i s t ' a ' b))

evaluates to

'(w ,x ,a ,b)

A comma-dot (, .) is like comma-at, but destructive.

Notes

This section is also intended as a bibliography. All the books and papers listed here
should be considered recommended reading.

viii Steele, Guy L., Jr., with Scott E. Fahlman, Richard P. Gabriel, David A. Moon,
Daniel L. Weinreb, Daniel G. Bobrow, Linda G. DeMichiel, Sonya E. Keene,
Gregor Kiczales, Crispin Perdue, Kent M. Pitman, Richard C. Waters, and Jon
L White. Common Lisp: the Language, 2nd Edition. Digital Press, Bedford
(MA), 1990.

1 McCarthy, John. Recursive Functions of Symbolic Expressions and their
Computation by Machine, Part I. CACM, 3:4 (April 1960), pp. 184-195.
McCarthy, John. History of Lisp. In Wexelblat, Richard L. (Ed.) History of
Programming Languages. Academic Press, New York, 1981, pp. 173-197.
Both were available at http://www-formal.steinford.edu/jmc/ at the
time of printing.

3 Brooks, Frederick P. The Mythical Man-Month. Addison-Wesley, Reading
(MA), 1975, p. 16.

Rapid prototyping is not just a way to write programs faster or better. It is a
way to write programs that otherwise might not get written at all.
Even the most ambitious people shrink from big undertakings. It's easier to
start something if one can convince oneself (however speciously) that it won't
be too much work. That's why so many big things have begun as small things.
Rapid prototyping lets us start small.

4 Ibid., p. i.

5 Murray, Peter and Linda. The Art of the Renaissance. Thames and Hudson,
London, 1963, p. 85.

5 Janson, W J. History of Art, 3rd Edition. Abrams, New York, 1986, p. 374.

401

http://www-formal.steinford.edu/jmc/

402 NOTES

The analogy applies, of course, only to paintings done on panels and later on
canvases. Wall-paintings continued to be done in fresco. Nor do I mean to
suggest that painting styles were driven by technological change; the opposite
seems more nearly true.

12 The names car and cdr derive from the internal representation of lists in the
first Lisp implementation: car stood for "contents of the address part of the
register" and cdr stood for "contents of the decrement part of the register."

17 Readers who have trouble with the concept of recursion may want to consult
either of the following:
Touretzky, David S. Common Lisp: A Gentle Introduction to Symbolic Com
putation. Benjamin/Cummings, Redwood City (CA), 1990, Chapter 8.
Friedman, Daniel P., and Matthias Felleisen. The Little Lisper. MIT Press,
Cambridge, 1987.

26 In ANSI Common Lisp there is also a lambda macro that allows you to write
(lambda (x) x) for #' (lambda (x) x). Since the use of this macro ob
scures the symmetry between lambda expressions and symbolic function names
(where you still have to use sharp-quote), it yields a specious sort of elegance
at best.

28 Gabriel, Richard P. Lisp: Good News, Bad News, How to Win Big. AI Expert,
June 1991, p. 34.

46 Another thing to be aware of when using s or t : it does not guarantee to preserve
the order of elements judged equal by the comparison function. For example, if
you sort (2 1 1.0) by <, a valid Common Lisp implementation could return
either (1 1 . 0 2) or (1.0 1 2) . To preserve as much as possible of the
original order, use instead the slower s t a b l e - s o r t (also destructive), which
could only return the first value.

61 A lot has been said about the benefits of comments, and little or nothing about
their cost. But they do have a cost. Good code, like good prose, comes from
constant rewriting. To evolve, code must be malleable and compact. Interlinear
comments make programs stiff and diffuse, and so inhibit the evolution of what
they describe.

62 Though most implementations use the ASCII character set, the only ordering
that Common Lisp guarantees for characters is as follows: the 26 lowercase
letters are in alphabetically ascending order, as are the uppercase letters, and
the digits from 0 to 9.

76 The standard way to implement a priority queue is to use a structure called a
heap. See: Sedgewick, Robert. Algorithms. Addison-Wesley, Reading (MA),
1988.

81 The definition of progn sounds a lot like the evaluation rule for Common Lisp
function calls (page 9). Though progn is a special operator, we could define a
similar function:

(defun our-progn (ftrest args)
(car (l a s t a rgs)))

NOTES 403

This would be horribly inefficient, but functionally equivalent to the real progn
if the last argument returned exactly one value.

84 The analogy to a lambda expression breaks down if the variable names are
symbols that have special meanings in a parameter list. For example,

(let ((ftkey 1) (ftoptional 2)))

is correct, but the corresponding lambda expression

((lambda (ftkey ftoptional)) 1 2)

is not. The same problem arises if you try to define do in terms of l abe l s .
Thanks to David Kuznick for pointing this out.

89 Steele, Guy L., Jr., and Richard P. Gabriel. The Evolution of Lisp. ACM
SIGPLANNotices 28:3 (March 1993). The example in the quoted passage was
translated from Scheme into Common Lisp.

91 To make the time look the way people expect, you would want to ensure that
minutes and seconds are represented with two digits, as in:

(defun get-time-string ()

(multiple-value-bind (s m h) (get-decoded-time)

(format nil ""A:"2,,,'0®A:~2,,,'OOA" h m s)))

94 In a letter of March 18 (old style) 1751, Chesterfield writes:

"It was notorious, that the Julian Calendar was erroneous, and had overcharged
the solar year with eleven days. Pope Gregory the Thirteenth corrected this
error [in 1582]; his reformed calendar was immediately received by all the
Catholic powers of Europe, and afterwards adopted by all the Protestant ones,
except Russia, Sweden, and England. It was not, in my opinion, very hon
ourable for England to remain in a gross and avowed error, especially in such
company; the inconveniency of it was likewise felt by all those who had foreign
correspondences, whether political or mercantile. I determined, therefore, to
attempt the reformation; I consulted the best lawyers, and the most skillful
astronomers, and we cooked up a bill for that purpose. But then my difficulty
began; I was to bring in this bill, which was necessarily composed of law
jargon and astronomical calculations, to both of which I am an utter stranger.
However, it was absolutely necessary to make the House of Lords think that I
knew something of the matter; and also to make them believe that they knew
something of it themselves, which they do not. For my own part, I could just as
soon have talked Celtic or Sclavonian to them, as astronomy, and they would
have understood me full as well; so I resolved to do better than speak to the
purpose, and to please instead of informing them. I gave them, therefore, only
an historical account of calendars, from the Egyptian down to the Gregorian,
amusing them now and then with little episodes; but I was particularly attentive
to the choice of my words, to the harmony and roundness of my periods, to my
elocution, to my action. This succeeded, and ever will succeed; they thought I
informed them, because I pleased them; and many of them said I had made the
whole very clear to them; when, God knows, I had not even attempted it."

404 NOTES

See: Roberts, David (Ed.) Lord Chesterfield's Letters. Oxford University
Press, Oxford, 1992.

95 In Common Lisp, a universal time is an integer representing the number of sec
onds since the beginning of 1900. The functions e n c o d e - u n i v e r s a l - t i m e
and d e c o d e - u n i v e r s a l - t i m e translate dates into and out of this format. So
for dates after 1900, there is a simpler way to do date arithmetic in Common
Lisp:

(defun num->date (n)
(mult iple-value-bind (ig no re d m y)

(decode-universal-t ime n)
(values d m y)))

(defun date->num (d m y)
(encode-universal- t ime 1 0 0 d m y))

(defun date+ (d m y n)
(num->date (+ (date->num d m y)

(* 60 60 24 n))))

Besides the range limit, this approach has the disadvantage that dates tend not
to be fixnums.

100 Although a call to se t f can usually be understood as a reference to a particular
place, the underlying machinery is more general. Suppose that a marble is a
structure with a single field called color:

(defstruct marble

color)

The following function takes a list of marbles and returns their color, if they all
have the same color, or n i l if they have different colors:

(defun uniform-color (1s t)
(l e t ((c (marble-color (car 1 s t))))

(d o l i s t (m (cdr 1 s t))
(unless (eql (marble-color m) c)

(re tu rn n i l)))
c))

Although uniform-color does not refer to a particular place, it is both rea
sonable and possible to have a call to it as the first argument to setf. Having
defined

(defun (se t f uniform-color) (val 1s t)
(d o l i s t (m 1s t)

(se t f (marble-color m) v a l)))

we can say

NOTES 405

(setf (uniform-color *marbles*) 'red)

to make the color of each element of *marbles* be red.

100 In older Common Lisp implementations, you have to use def se t f to define
how a call should be treated when it appears as the first argument to setf.
Be careful when translating, because the parameter representing the new value
comes last in the definition of a function whose name is given as the second
argument to def setf. That is, the call

(defun (setf primo) (val 1s t) (se t f (car 1s t) va l))

is equivalent to

(defsetf primo set-primo)

(defun set-primo (1st val) (se t f (car 1s t) va l))

106 C, for example, lets you pass a pointer to a function, but there's less you can
pass in a function (because C doesn't have closures) and less the recipient can
do with it (because C has no equivalent of apply). What's more, you are in
principle supposed to declare the type of the return value of the function you
pass a pointer to. How, then, could you write map-int or f i l t e r , which
work for functions that return anything? You couldn't, really. You would
have to suppress the type-checking of arguments and return values, which is
dangerous, and even so would probably only be practical for 32-bit values.

109 For many examples of the versatility of closures, see: Abelson, Harold, and
Gerald Jay Sussman, with Julie Sussman. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, 1985.

109 For more information about Dylan, see: Shalit, Andrew, with Kim Barrett,
David Moon, Orca Starbuck, and Steve Strassmann. Dylan Interim Reference
Manual. Apple Computer, 1994.

At the time of printing this document was accessible from several sites, includ
ing http://www.harlequin.com and http://www.apple.com.
Scheme is a very small, clean dialect of Lisp. It was invented by Guy L.
Steele Jr. and Gerald J. Sussman in 1975, and is currently defined by: Clinger,
William, and Jonathan A. Rees (Eds.) Revised4 Report on the Algorithmic
Language Scheme. 1991.

This report, and various implementations of Scheme, were at the time of
printing available by anonymous FTP from swiss - f tp . a i . m i t . edu: pub.
There are two especially good textbooks that use Scheme—Structure and Inter
pretation (see preceding note) and: Springer, George and Daniel P. Friedman.
Scheme and the Art of Programming. MIT Press, Cambridge, 1989.

112 The most horrible Lisp bugs may be those involving dynamic scope. Such
errors almost never occur in Common Lisp, which has lexical scope by default.
But since so many of the Lisps used as extension languages still have dynamic
scope, practicing Lisp programmers should be aware of its perils.

http://www.harlequin.com
http://www.apple.com

406 NOTES

One bug that can arise with dynamic scope is similar in spirit to variable capture
(page 166). You pass one function as an argument to another. The function
passed as an argument refers to some variable. But within the function that
calls it, the variable has a new and unexpected value.
Suppose, for example, that we wrote a restricted version of mapcar as follows:

(defun our-mapcar (fn x)
(if (null x)

nil
(cons (funcall fn (car x))

(our-mapcar fn (cdr x)))))

Then suppose that we used this function in another function, add- to -a l l , that
would take a number and add it to every element of a list:

(defun a d d - t o - a l l (1st x)
(our-mapcar #'(lambda (num) (+ num x))

1 s t))

In Common Lisp this code works fine, but in a Lisp with dynamic scope it
would generate an error. The function passed as an argument to our-mapcar
refers to x. At the point where we send this function to our-mapcar, x would
be the number given as the second argument to add- to -a l l . But where the
function will be called, within our-mapcar, x would be something else: the
list passed as the second argument to our-mapcar. We would get an error
when this list was passed as the second argument to +.

123 Newer implementations of Common Lisp include a variable *read-eval* that
can be used to turn off the #. read-macro. When calling read-from-str ing
on user input, it is wise to bind *read-eval* to n i l . Otherwise the user could
cause side-effects by using #. in the input.

125 There are a number of ingenious algorithms for fast string-matching, but string-
matching in text files is one of the cases where the brute-force approach is still
reasonably fast. For more on string-matching algorithms, see: Sedgewick,
Robert. Algorithms. Addison-Wesley, Reading (MA), 1988.

141 In 1984 Common Lisp, reduce did not take a : key argument, so random-next
would be defined:

(defun random-next (prev)
(l e t * ((choices (gethash prev *words*))

(i (random (l e t ((x 0))
(do l i s t (c choices)

(incf x (cdr c)))
x))))

(d o l i s t (pa i r choices)
(i f (minusp (decf i (cdr p a i r)))

(re tu rn (car p a i r))))))

NOTES 407

141 In 1989, a program like Henley was used to simulate netnews postings by
well-known flamers. The fake postings fooled a significant number of readers.
Like all good hoaxes, this one had an underlying point. What did it say about
the content of the original flames, or the attention with which they were read,
that randomly generated postings could be mistaken for the real thing?
One of the most valuable contributions of artificial intelligence research has
been to teach us which tasks are really difficult. Some tasks turn out to be
trivial, and some almost impossible. If artificial intelligence is concerned with
the latter, the study of the former might be called artificial stupidity. A silly
name, perhaps, but this field has real promise—it promises to yield programs
that play a role like that of control experiments.

Speaking with the appearance of meaning is one of the tasks that turn out
to be surprisingly easy. People's predisposition to find meaning is so strong
that they tend to overshoot the mark. So if a speaker takes care to give
his sentences a certain kind of superficial coherence, and his audience are
sufficiently credulous, they will make sense of what he says.
This fact is probably as old as human history. But now we can give examples
of genuinely random text for comparison. And if our randomly generated
productions are difficult to distinguish from the real thing, might that not set
people to thinking?

The program shown in Chapter 8 is about as simple as such a program could
be, and that is already enough to generate "poetry" that many people (try it on
your friends) will believe was written by a human being. With programs that
work on the same principle as this one, but which model text as more than a
simple stream of words, it will be possible to generate random text that has
even more of the trappings of meaning.

For a discussion of randomly generated poetry as a legitimate literary form,
see: Low, Jackson M. Poetry, Chance, Silence, Etc. In Hall, Donald (Ed.)
Claims for Poetry. University of Michigan Press, Ann Arbor, 1982. You bet.
Thanks to the Online Book Initiative, ASCII versions of many classics are
available online. At the time of printing, they could be obtained by anonymous
FTP from f t p . s td . com: obi.

See also the Emacs Dissociated Press feature, which uses an equivalent algo
rithm to scramble a buffer.

150 The following function will display the values of the sixteen constants that
mark the limits of floating point representation in a given implementation:

(defun float-limits ()

(dolist (m '(most least))

(dolist (s '(positive negative))

(dolist (f '(short single double long))

(let ((n (intern (string-upcase

(format nil "~A-~A-~A-float"

m s f)))))

(format t "~30A ~k~l" n (symbol-value n)))))))

408 NOTES

164 The Quicksort algorithm was published by Hoare in 1962, and is described in:
Knuth, D. E. Sorting and Searching. Addison-Wesley, Reading (MA), 1973.

173 Foderaro, John K. Introduction to the Special Lisp Section. CACM 34:9
(September 1991), p. 27.

176 For more detailed information about CLOS programming techniques, see the
following:
Keene, Sonya E. Object Oriented Programming in Common Lisp. Addison-
Wesley, Reading (MA), 1989.
Kiczales, Gregor, Jim des Rivieres, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, Cambridge, 1991.

178 Let's play that back one more time: we can make all these types of modifications
without even looking at the rest of the code. This idea may sound alarmingly
familiar to some readers. It is the recipe for spaghetti code.
The object-oriented model makes it easy to build up programs by accretion.
What this often means, in practice, is that it provides a structured way to write
spaghetti code. This is not necessarily bad, but it is not entirely good either.
A lot of the code in the real world is spaghetti code, and this is probably not
going to change soon. For programs that would have ended up as spaghetti
anyway, the object-oriented model is good: they will at least be structured
spaghetti. But for programs that might otherwise have avoided this fate, object-
oriented abstractions could be more dangerous than useful.

133 When an instance would inherit a slot with the same name from several of its
superclasses, the instance inherits a single slot that combines the properties of
the slots in the superclasses. The way combination is done varies from property
to property:

1. The : a l loca t ion , :initform(ifany), and : document at ion (if any),
will be those of the most specific classes.

2. The r in i t a rgs will be the union of the r in i t a rgs of all the super
classes. So will the .-accessors, : readers, and : writers , effectively.

3. The : type will be the intersection of the : types of all the superclasses.

191 You can avoid explicitly uninterning the names of slots that you want to be
encapsulated by using uninterned symbols as the names to start with:

(progn
(defclass counter 0 ((#1=#:state :initform 0)))

(defmethod increment ((c counter))

(incf (slot-value c >#1#)))

(defmethod clear ((c counter))

(setf (slot-value c >#1#) 0)))

The progn here is a no-op; it is used to ensure that all the references to the
uninterned symbol occur within the same expression. If this were inconvenient,
you could use the following read-macro instead:

NOTES 409

(defvar *symtab* (make-hash-table :test #'equal))

(defun pseudo-intern (name)

(or (gethash name *symtab*)

(setf (gethash name *symtab*) (gensym))))

(set-dispatch-macro-character #\# #\[

#'(lambda (stream charl char2)

(do ((ace nil (cons char ace))

(char (read-char stream) (read-char stream)))

((eql char #\]) (pseudo-intern ace)))))

Then it would be possible to say just:

(defclass counter () ((#[state] rinitform 0)))

(defmethod increment ((c counter))

(incf (slot-value c '#[state])))

(defmethod clear ((c counter))

(set f (s lo t -va lue c ' # [s t a t e]) 0))

204 The following macro pushes new elements into binary search trees:

(defmacro bst-push (obj bst <)
(mult iple-value-bind (vars forms var se t access)

(get -se t f -expansion bs t)
(l e t ((g (gensym)))

' (l e t * ((, g ,obj)
,®(mapcar # ' l i s t vars forms)
(, (c a r var) (b s t - i n s e r t ! ,g ,access ,<)))

, s e t))))

213 Knuth, Donald E. Structured Programming with goto Statements. Computing
Surveys, 6:4 (December 1974), pp. 261-301.

214 Knuth, Donald E. Computer Programming as an Art. In ACM Turing Award
Lectures: The First Twenty Years. ACM Press, 1987.

This paper and the preceding one are reprinted in: Knuth, Donald E. Literate
Programming. CSLI Lecture Notes #27, Stanford University Center for the
Study of Language and Information, Palo Alto, 1992.

216 Steele, Guy L., Jr. Debunking the "Expensive Procedure Call" Myth or, Pro
cedural Call Implementations Considered Harmful or, LAMBDA: The Ultimate
GOTO. Proceedings of the National Conference of the ACM, 1977, p. 157.
Tail-recursion optimization should mean that the compiler will generate the
same code for a tail-recursive function as it would for the equivalent do. The
unfortunate reality, at least at the time of printing, is that many compilers
generate slightly faster code for dos.

410 NOTES

217 For some examples of calls to disassemble on various processors, see:
Norvig, Peter. Paradigms of Artificial Intelligence Programming: Case Studies
in Common Lisp. Morgan Kaufmann, San Mateo (CA), 1992.

218 A lot of the increased popularity of object-oriented programming is more
specifically the increased popularity of C++, and this in turn has a lot to do with
typing. C++ gives you something that seems like a miracle in the conceptual
world of C: the ability to define operators that work for different types of
arguments. But you don't need an object-oriented language to do this—all you
need is run-time typing. And indeed, if you look at the way people use C++,
the class hierarchies tend to be flat. C++ has become so popular not because
people need to write programs in terms of classes and methods, but because
people need a way around the restrictions imposed by C's approach to typing.

219 Macros can make declarations easier. The following macro expects a type
name and an expression (probably numeric), and expands the expression so
that all arguments, and all intermediate results, are declared to be of that type.
If you wanted to ensure that an expression e was evaluated using only fixnum
arithmetic, you could say (with-type fixnum e).

(defmacro with-type (type expr)
' (t h e ,type , (i f (atom expr)

expr
(expand-call type (b inar ize expr)))))

(defun expand-call (type expr)
c (, (c a r expr) ,@(mapcar #'(lambda (a)

' (wi th- type , type ,a))
(cdr expr))))

(defun b inar ize (expr)
(i f (and (nthcdr 3 expr)

(member (car expr) ' (+ - * /)))
(des t ruc tur ing-bind (op al a2 . r e s t) expr

(b inar ize ' (, o p (,op , a l ,a2) ,®res t)))
expr))

The call to b ina r ize ensures that no arithmetic operator is called with more
than two arguments. As the Lucid reference manual points out, a call like

(the fixnum (+ (the fixnum a)
(the fixnum b)
(the fixnum c)))

still cannot be compiled into fixnum additions, because the intermediate results
(e.g. a + b) might not be fixnums.

Using with-type, we could duplicate the fully declared version of poly on
page 219 with:

NOTES 411

(defun poly (a b x)
(with-type fixnum (+ (* a (expt x 2)) (* b x))))

If you wanted to do a lot of fixnum arithmetic, you might even want to define
a read-macro that would expand into a (with-type fixnum . . .) .

224 On many Unix systems, /us r /d ic t /words is a suitable file of words.

226 T is a dialect of Scheme with many useful additions, including support for
pools. For more on T, see: Rees, Jonathan A., Norman I. Adams, and James R.
Meehan. The T Manual, 5th Edition. Yale University Computer Science
Department, New Haven, 1988.

The T manual, and T itself, were at the time of printing available by anonymous
FTP from hing. l c s . mit . edu: pub / t3 .1 .

229 The difference between specifications and programs is a difference in degree,
not a difference in kind. Once we realize this, it seems strange to require
that one write specifications for a program before beginning to implement
it. If the program has to be written in a low-level language, then it would
be reasonable to require that it be described in high-level terms first. But as
the programming language becomes more abstract, the need for specifications
begins to evaporate. Or rather, the implementation and the specifications can
become the same thing.

If the high-level program is going to be re-implemented in a lower-level lan
guage, it starts to look even more like specifications. What Section 13.7 is
saying, in other words, is that the specifications for C programs could be
written in Lisp.

230 Benvenuto Cellini's story of the casting of his Perseus is probably the most
famous (and the funniest) account of traditional bronze-casting: Cellini, Ben
venuto. Autobiography. Translated by George Bull, Penguin Books, Har-
monds worth, 1956.

239 Even experienced Lisp hackers find packages confusing. Is it because packages
are gross, or because we are not used to thinking about what happens at read-
time?

There is a similar kind of uncertainty about def macro, and there it does seem
that the difficulty is in the mind of the beholder. A good deal of work has gone
into finding a more abstract alternative to def macro. But def macro is only
gross if you approach it with the preconception (common enough) that defining
a macro is like defining a function. Then it seems shocking that you suddenly
have to worry about variable capture. When you think of macros as what they
are, transformations on source code, then dealing with variable capture is no
more of a problem than dealing with division by zero at run-time.
So perhaps packages will turn out to be a reasonable way of providing modu
larity. It is prima facie evidence on their side that they resemble the techniques
that programmers naturally use in the absence of a formal module system.

242 It might be argued that loop is more general, and that we should not define
many operators to do what we can do with one. But it's only in a very legalistic

412 NOTES

sense that loop is one operator. In that sense, eval is one operator too. Judged
by the conceptual burden it places on the user, loop is at least as many operators
as it has clauses. What's more, these operators are not available separately,
like real Lisp operators: you can't break off a piece of loop and pass it as an
argument to another function, as you could map-int.

248 For more on logical inference, see: Russell, Stuart, and Peter Norvig. Artificial
Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (NJ), 1995.

273 Because the program in Chapter 17 takes advantage of the possibility of having
a se t f form as the first argument to def un, it will only work in more recent
Common Lisp implementations. If you want to use it in an older implementa
tion, substitute the following code in the final version:

(proclaim '(inline lookup set-lookup))

(defsetf lookup set-lookup)

(defun set-lookup (prop obj val)

(let ((off (position prop (layout obj) :test #'eq)))

(if off

(setf (svref obj (+ off 3)) val)

(error "Can't set "A of ~A." val obj))))

(defmacro defprop (name ftoptional meth?)

'(progn

(defun ,name (obj &rest args)

,(if meth?

'(run-methods obj ',name args)

'(rget ',name obj nil)))

(defsetf ,name (obj) (val)

'(setf (lookup ',',name ,obj) ,val))))

276 If def meth were defined as

(defmacro defmeth (name obj parms ferest body)
(l e t ((gobj (gensym)))

' (l e t ((,gobj ,obj))
(se t f (gethash ',name ,gobj)

#'(lambda ,parms
(l abe l s ((next ()

(funcal l (get-next ,gobj ',name)
,@parms)))

,®body))))))

then it would be possible to invoke the next method simply by calling next:

(defmeth area grumpy-circle (c)
(format t "How dare you s tereotype me!""/,")
(next))

NOTES 413

So far as the example goes, this looks simpler; but if next were imple
mented this way, we would have to add another function to do the job of
next-method-p.

284 For really fast access to slots we would use the following macro:

(defmacro with-slotref ((name prop class) &rest body)

(let ((g (gensym)))

'(let ((,g (+ 3 (position ,prop (layout ,class)

.-test #'eq))))

(macrolet ((,name (obj) '(svref ,obj ,',g)))

,<9body))))

It defines a local macro that refers directly to the vector element corresponding
to a slot. If in some segment of code you wanted to refer to the same slot in
many instances of the same class, with this macro the slot references would be
straight svref s.
For example, if the balloon class is defined as follows,

(setf balloon-class (class nil size))

then this function pops (in the old sense) a list of balloons:

(defun popem (balloons)
(wi th-s lo t re f (bsize ' s i z e ba l loon-c lass)

(do l i s t (b bal loons)
(setf (bsize b) 0))))

284 Gabriel, Richard P. Lisp: Good News, ©ad News, How to Win Big. AI Expert,
June 1991, p. 35.

As early as 1973, Richard Fateman was able to show that the MacLisp com
piler for the PDP-10 generated faster code than the manufacturer's FORTRAN
compiler. See: Fateman, Richard J. Reply to an editorial. ACM SIGSAM
Bulletin, 25 (March 1973), pp. 9-11.

399 It's easiest to understand backquote if we suppose that backquote and comma
are like quote, and that ' ,x simply expands into (bq (comma x)) . If this
were so, we could handle backquote by augmenting eval as in this sketch:

(defun eval2 (expr)

(case (and (consp expr) (car expr))

(comma (error "unmatched comma"))

(bq (eval-bq (second expr) 1))

(t (eval expr))))

(defun eval-bq (expr n)

(cond ((atom expr)

expr)

((eql (car expr) 'comma)

(if (- n 1)

414 NOTES

(eval2 (second expr))
(list 'comma (eval-bq (second expr)

(1- n)))))
((eql (car expr) 'bq)
(list 'bq (eval-bq (second expr) (1+ n))))
(t
(cons (eval-bq (car expr) n)

(eval-bq (cdr expr) n)))))

In eval-bq, the parameter n is used to determine which commas match the
current backquote. Each backquote increments it, and each comma decrements
it. A comma encountered when n = 1 is a matching comma.
Here is the example from page 400:

> (se t f x ' a a 1 y 'b b 2)
2
> (eval2 ' (bq (bq (w (comma x) (comma (comma y))))))
(BQ (W (COMMA X) (COMMA B)))
> (eval2 *)
(W A 2)

At some point a particularly remarkable molecule was formed by accident. We
will call it the Replicator. It may not necessarily have been the biggest or the
most complex molecule around, but it had the extraordinary property of being
able to create copies of itself.

Richard Dawkins
The Selfish Gene

We shall first define a class of symbolic expressions in terms of ordered pairs
and lists. Then we shall define five elementary functions and predicates,
and build from them by composition, conditional expressions, and recursive
definitions an extensive class of functions of which we shall give a number
of examples. We shall then show how these functions themselves can be
expressed as symbolic expressions, and we shall define a universal function
apply that allows us to compute from the expression for a given function its
value for given arguments.

John McCarthy
Recursive Functions of Symbolic Expressions
and their Computation by Machine, Part I

Index

Abelson, Harold 405
abort function 338
aborting computations 91
abs function 347, 146
accessors 179
aeons function 356
acos function 347, 149
acosh function 347, 149
Adams, Norman I. 411
add-method generic function 328
adjoin function 356,45
adjus t -a r ray function 360
adjus tab le-ar ray-p function 360
adultery 180
after-methods 188
aif 170
algorithms 214
alists—see lists, association
a l loca t e - ins t ance generic function 328
alpha-char-p function 354, 67
alphanumericp function 354
and macro 316, 14
append function 356, 36
append1 105
applicable methods—see methods, appli

cable
apply function 316, 25, 414
apropos function 389
apropos - l i s t function 389
aref function 361, 58
arguments 8

keyword 44, 64
ar i thmet ic -er ror -operands generic func

tion 347
a r i t hme t i c - e r ro r -ope ra t ion generic

function 347

around-methods 188
arrays

access to elements of 58
that contain themselves 209
creating 58
displaced 59
displaying 59
initializing 58
layout in memory 221
literal 59
one-dimensional—see vectors
size limits of 58
specialized 219
traversing 221

array-dimension function 361
array-dimension- l imit constant 391
array-dimensions function 361
array-displacement function 361
array-element- type function 361
a r r a y - h a s - f i l l - p o i n t e r - p

function 361
array- in-bounds-p function 361
array-rank function 361
a r ray - rank- l imi t constant 391
array-row-major-index function 361
a r r a y - t o t a l - s i z e function 362
a r r a y - t o t a l - s i z e - l i m i t constant 391
arrayp function 361
artificial intelligence 407
ash function 347
as in function 347,149
as inn function 347,149
a s s e r t macro 338, 244
assignment 21, 35
as s o c function 356, 51
assoc- i f function 356, 51

415

416 INDEX

assoc - i f -no t function 356
assoc-lists—see lists, association
a t an function 347, 149
atanh function 347, 149
atom function 356, 33
atoms 9
Autocad 3
automatic memory management 5, 54,

222
auxiliary methods 187
avg 170

backquote 399, 163
comma within 163, 413
comma-at within 164
model of 413

backtrace 289
backward chaining 248
Barrett, Kim 405
base case 43
b a s e - s t r i n g type 397
before-methods 188
bignums 150, 225
binary search 60
binary search trees 71, 203, 409
b i t function 362
b i t - and function 362
b i t - a n d c l function 362
bi t -andc2 function 362
b i t - eqv function 362
b i t - i o r function 362
bi t -nand function 362
b i t - n o r function 362
b i t - n o t function 362
b i t - o r e 1 function 362
b i t - o r c 2 function 362
b i t - v e c t o r - p function 362
b i t - x o r function 362
block special operator 316, 81
Bobrow, Daniel G. 401, 408
body

of a function 15
of a macro 164
of a rule 247

boole function 347
boole-1 constant 391
boole-2 constant 391
boole-and constant 391
boole-andcl constant 391
boole-andc2 constant 391
boole -c l constant 391
boole-c2 constant 391
boo le - c l r constant 391

boole-eqv constant 391
boole - io r constant 391
boole-nand constant 391
boole-nor constant 391
boole-orc l constant 391
boole-orc2 constant 391
boole-se t constant 391
boole-xor constant 391
both-case-p function 354
bottlenecks 213
bottom-up programming 3, 104, 173, 257
boundp function 342, 21
box notation 32
break function 338
break loop 10,287
break-on-signals variable 391
broadcast-s tream-streams

function 374
bronze 230
Brooks, Frederick P. 3,4
BSTs—see binary search trees
bugs—see errors
but l a s t function 356
buttons 262
byte function 348
by te -pos i t i on function 348
by te - s i ze function 348

C
expressive power of 1
functional arguments in 405
mixed with Lisp 229
syntax of 9
typing in 410

C++ 2,410
caaaar function 356, 40
caaadr function 356, 40
caaar function 356, 40
caadar function 356,40
caaddr function 356, 40
caadr function 356,40
caar function 356,40
cadaar function 356, 40
cadadr function 356, 40
cadar function 356,40
caddar function 356, 40
cadddr function 356, 40
caddr function 356,40
cadr function 356, 40
calendars 403
ca l l -a rguments - l imi t constant 391
call-method macro 328

INDEX 417

call-next-method function 329, 188,
276

car function 356, 12, 31,402
case macro 316, 86, 244
catch special operator 316, 91
cease macro 316
cdaaar function 356, 40
cdaadr function 356, 40
cdaar function 356, 40
cdadar function 356, 40
cdaddr function 356,40
cdadr function 356,40
cdar function 356,40
eddaar function 356, 40
eddadr function 356, 40
eddar function 356, 40
edddar function 356, 40
eddddr function 356, 40
edddr function 356, 40
eddr function 356, 40
cdr function 356, 12, 31,402
ce i l i ng function 348, 145
cel l -error-name generic function 338
Cellini, Benvenuto 411
cerror function 339
change-class generic function 329
char function 364, 62
char-code function 354, 61
char-code- l imit constant 391
char-downcase function 354
char-equal function 354
char-greaterp function 354
char - in t function 354
char - lessp function 354
char-name function 355
char-not-equal function 355
char -not -grea te rp function 355
char -no t - l essp function 355
char-upcase function 355
char/= function 355, 62
char< function 355, 62
char<= function 355, 62
char= function 355, 62
char> function 355, 62
char>= function 355, 62
character function 354
characters

alphabetic 67
ASCII 61,402
comparison of 62
digit 68
graphic 67
literal 61

char act erp function 354

check-type macro 339, 244
Chesterfield 403
cilantro 36
c i s function 348
classes

denning 177
purpose of 277

class-name generic function 329
c lass -of function 329
class precedence—see precedence
c l ea r - i npu t function 374
c lea r -ou tpu t function 374
dinger, William 405
clos 176
close generic function 374, 120
closures 107
c l rhash function 370, 256
code-char function 355
coerce function 315, 161, 280
comments

conventions for 61
cost of 402
syntax of 61

Common Lisp
condition system—see conditions
datatypes 11,27
declarations in 218
display of values in 25
evaluation rule 9, 81, 161
influence on Dylan 109
not case sensitive, by default 133
number of special operators 173
Object System—see CLOS
see also: Lisp

common-lisp package 239
common-lisp-user package 136, 236
congruent parameter lists 186
conjoin 110
compose 110
compression 36
compilat ion- speed compilation param

eter 214
compilation

of files of code 114
of individual functions 113
inline 216
of inner functions 114
inspecting results of 217
of lambda expressions 161
best time for 289

compilation parameters 214, 217
compile function 313, 113, 161
compi le- f i le function 388,114
compile-f ile-pathname function 388

418 INDEX

compile-f He-pathname
variable 391

compile-fi le-truename
variable 391

•compi le-pr in t* variable 391
•compile-verbose* variable 391
compiled-function-p function 317,

113
compiler-macro-function function 313
complement function 317, 109
complex function 348
complex numbers—see numbers, complex
complexp function 348, 143
compute-applicable-methods generic

function 329
compute-res tar ts function 339
conditionals 85
concatenate function 366, 63
concatenated-stream-streams func

tion 374
cond macro 317, 85
conditions 244
conjugate function 348
cons function 356, 12, 31
conses

as lists 32
as pairs 49
structure of 31

consing 54
avoiding with destructive operators 222,

224
avoiding with fill-pointers 223
avoiding with fixnums 225
avoiding with heap allocation 225
avoiding with pools 226
whether to avoid 222

consp function 356, 33
constants, defining 21
constant ly function 317,111
constantp function 313
continue function 339
control experiments 407
copy-a l i s t function 356
copy- l i s t function 356, 36, 198
copy-ppr in t -d ispatch function 379
copy-readtable function 386
c opy - s e q function 366
copy-s t ruc ture function 336
copy-symbol function 342
copy-tree function 357, 41, 198
cos function 348, 149
cosh function 348
count function 366
count- i f function 366

count - i f -not function 366
ctypecase macro 317
curry 110

dates
arithmetic with 92,404
parsing 66

Dawkins, Richard 414
death 102
debug compilation parameter 214
debug-io variable 392
•debugger-hook* variable 392
decf macro 348, 148
declaim macro 313, 215
dec la ra t ion declaration 315
declarations

determining whether used 217
set compilation parameters 215
special—see variables, special
type—see type declarations

declare symbol 313, 218
decode-f l oa t function 348
decode-universal- t ime function 389,

404
•defaul t -pathname-defaul ts*

variable 392
def c lass macro 329, 177
def constant macro 317,21
def generic macro 330, 190
def ine-compiler-macro macro 313
def ine-condi t ion macro 339
define-method-combination

macro 332
def ine-modify-macro macro 317, 169
def ine-set f -expander macro 317
def ine-symbol-macro macro 313
defmacro macro 314, 162
def method macro 332, 184
def package macro 343, 137
def parameter macro 317, 20
def setf macro 318, 405, 412
def s t r u c t macro 336, 69
def type macro 315, 233
defun macro 318, 14, 100, 113
def var macro 318,251
de le t e function 368, 201
de l e t e -dup l i ca t e s function 368, 222
de le t e - f i l e function 373
d e l e t e - i f function 368, 222
d e l e t e - i f - n o t function 368
delete-package function 344
DeMichiel, Linda G. 401
denominator function 348, 146

INDEX 419

depos i t - f i e ld function 348
describe function 389
descr ibe-object generic function 389
destructive operations 46, 55, 201, 222,

224
des t ruc tur ing-bind macro 318, 85,

103
d ig i t - cha r function 355
d i g i t - c h a r - p function 355, 68
d i rec tory function 373
directory-namestr ing function 371
disassemble function 389, 217
d i s jo in 110
dispatch 185
diversity 100
DNA 1,414
do macro 324,23,87

conceptually recursion 101
point of 89

do* macro 324, 88
do-all-symbols macro 344
do-external-symbols macro 344
do-symbols macro 344
documentation generic function 389,

100
documentation strings

for functions 100
for slots 181

d o l i s t macro 324, 24, 88
dot notation 49
dotimes macro 324, 88
double-f l o a t - e p s i l o n constant 392
double-f loat -negat ive-epsi loncon

stant 392
dpb function 348
dr ibble function 389
Dylan 109
dynamic-extent declaration 225
dynamic allocation—see automatic mem

ory management
dynamic languages 6

ecase macro 318, 244
echo-stream-input-stream function 374
echo-stream-output-stream function

374
ed function 389
eighth function 357, 40
e l t function 366, 63
Emacs 3, 17,407
embedded languages 269
encapsulation 191

via closures 108

via packages 136,191,238
encode-universal- t ime function 389,

404
endp function 357
enough-namestring function 371
e n s u r e - d i r e c t o r i e s - e x i s t

function 373
ensure-gener ic- funct ion

function 333
eq function 318,35,228
eql function 318, 16
equal function 318, 34,62
equality 34

numeric 146
structural 34

equalp function 318, 78
e r ro r function 339, 92, 244
errors

catching quickly 5
involving circular structure 209, 290
as conditions 244
correctable 245
division by zero 10, 411
involving dynamic scope 405
finding in backtrace 289
ignoring 246
infinite loops 289
guarding against 92
gross and avowed 403
involving keyword and optional param

eters 293
misdeclarations 294
modifying constant structure 210
modifying shared structure 199
modifying traversed sequence 199
multiple evaluation 167
involving n i l 290,292
no longer possible 5
obsolete inlined functions 217
omitting base case in recursion 43,290
overflow 150
read-macro intended to cause 131
recovering from 10, 245
caused by renaming 292
in user input 122, 246, 291
variable capture 166, 411
warnings 294
see also: name clashes

error handler 92
•e r ro r -ou tpu t* variable 392
etypecase macro 319
eval function 314, 160, 413
evaluation

avoiding 10

420 INDEX

multiple 167, 169
order of 9

evaluation rule 9
eval-when special operator 314, 236
evenp function 349, 147
every function 319, 47
evolution

of Lisp—see Lisp, evolution of
of programs—see Lisp, evolution of pro

grams in
of programming styles 5

exp function 349, 149
exponentiation 148
export function 345, 238
expression 7
expt function 349, 148
extensibility 3
exploration 6, 173, 230

factorials 89
Fahiman, Scott E. 401
falsity 13
Fateman, Richard J. 413
fbotmdp function 319,99
f c e i l i n g function 349
f d e f i n i t i o n function 319
• f ea tu res* variable 392
Felleisen, Matthias 402
f f loor function 349
Fibonacci function 116
f i f t h function 357,40
FIFO 200
f i l e - a u t h o r function 374
f i le -er ror -pa thname generic function

374
f i l e - l e n g t h generic function 375
f i l e -namest r ing function 371
f i l e - p o s i t i o n function 375
f i l e - s t r i n g - l e n g t h generic function 375
f i l e - w r i t e - d a t e function 374
f i l l function 367
f i l l - p o i n t e r function 362
fill-pointers 223
f i l t e r 105
find function 367, 65
f ind-a l l -symbols function 345
f i n d - c l a s s function 333
f i nd - i f function 367, 65
f i n d - i f - n o t function 367
find-method generic function 333
find-package function 345, 236
f i n d - r e s t a r t function 339
find-symbol function 345

f in i sh-ou tpu t function 375
f i r s t function 357, 40
fixnums 150,218,35
flames 407
Flanders 5
f l e t special operator 319
f l oa t function 349, 144
f l o a t - d i g i t s function 349
f l o a t - p r e c i s ion function 349
f l o a t - r a d i x function 349
f l o a t - s i g n function 349
floating-point numbers—see numbers,

floating-point
f loa tp function 349, 143
f loor function 349, 145
f makunbound function 319, 190
Foderaro, John K. 173
for 170
force-output function 375
format function 379, 18, 123

building strings with 62
printing floats with 124
printing on a fresh line with 260
printing in lowercase with 260
printing times with 403
unpredictable rounding by 125
writing to a stream with 119

format directives 124
formatter macro 384
Fortune Cookie Institute 258
four th function 357, 40
f r e s h - l i n e function 375, 224
Friedman, Daniel P. 402, 405
f round function 349
f t runca te function 349
f t ype declaration 315, 313
funcal l function 319, 25
function special operator 319, 25
functions

as arguments 25,110
anonymous 26
calling 9
compiled 113
denning—see def un
documentation strings of 100
generic—see generic functions
interpreted 113
literal 26
local 101
vs. macros 172,217
no main 15
as objects 25, 107
recursive—see recursion
as return values 107

INDEX 421

see also: closures, compilation
functional programming 22

aids debugging 289
allows interactive testing 253
synergy with recursion 114

function-keywords generic
function 333

function-lambda-expression
function 319

functionp function 319

Gabriel, Richard P. 28, 89, 284, 401
garbage 54
garbage collection 6, 54, 222
GC—see garbage collection
gcd function 349
generic functions

composed of methods 184
vs. message-passing 192, 285

gensym function 342, 166
gensyms 136

used to avoid variable capture 166
used to encapsulate slots 408

•gensym-counter* variable 392
gentemp function 342
get function 342, 134
get-decoded-time function 389, 91
get -dispatch-macro-character func

tion 386
g e t - i n t e r n a l - r e a l - t i m e function 389
ge t - in t e rna l - run - t ime function 389
get-macro-character function 386,

236
ge t -ou tpu t - s t r eam-s t r ing function 375
ge t -p rope r t i e s function 357
get-setf-expansionfunction 320,409
ge t -un iversa l - t ime function 390
getf function 357
gethash function 370,76
global variables—see variables, special
go special operator 320, 83
graphic-char-p function 355, 67

handlers 244
handler-bind macro 339
handler-case macro 340
hash tables

creating 76
efficiency of 228
equality of keys in 78
expansion of 78
iteration on 78
vs. lists 77

as sets 77
size of 78

hash- table-count function 370, 139
hash- tab le -p function 370
hash - t ab l e - r ehash - s i ze

function 370
hash- tab le - rehash- th resho ld

function 370
h a s h - t a b l e - s i z e function 370
h a s h - t a b l e - t e s t function 370
head 247
hoaxes 407
host-namestr ing function 371
HTML 257
hypertext 259

identity, testing 16, 34
i d e n t i t y function 320, 105
if special operator 320, 13
ignorable declaration 315, 313
ignore declaration 313, 294
ignore -e r ro r s macro 340, 246
image plane 151
imagination 5, 222
imagpart function 349, 146
import function 345, 238
importing—see packages, importing into
immediate data 35
in 170
in-package macro 345, 137
incf macro 349, 148
indentation 17
inference 247
information-hiding—see encapsulation
inheritance 177, 272, 408
initargs 180
initforms 180
i n i t i a l i z e - i n s t a n c e generic function

334
i n l i n e declaration 315, 313
input 18, 121

as bytes 234
as characters 123
avoiding errors in 246
parsed 122
as strings 121

input-s t ream-p generic function 375
inspect function 390
instances

vs. classes 277
creating 177
vs. structures 178, 179

integers—see numbers, integer

422 INDEX

in teger -decode- f loa t function 350
i n t ege r - l eng th function 350
in tegerp function 350, 143
intellectuals 188
interactive programming 3, 5, 6, 23, 95,

105, 215, 289
in t e r ac t ive - s t r eam-p function 375
Interleaf 3
i n t e r n function 345, 136
in te rna l - t ime-uni t s -per -secondcon

stant 392
Internet 259
interning—see symbols, interning of
interpreters 215
i n t e r s e c t i o n function 357, 45
inval id-method-error function 340
invoke-debugger function 340
i nvoke - re s t a r t function 340
i n v o k e - r e s t a r t - i n t e r a c t i v e l y func

tion 340
I/O—see input, output, files, pathnames,

streams
i s q r t function 350
iteration 23,87

on hash tables 78
on lists 24
in pseudo-English 239

Janson, W. J. 5

Keene, Sony a E. 401,408
&key—see parameters, keyword
keyword package 137
keywords 137
keyword arguments—see arguments, key

word
keywordp function 342
Kiczales, Gregor 401, 408
Knuth, Donald E. x, 213, 214

l abe l s special operator 319, 101
Lambert's Law 154
lambda macro 314, 402
lambda expression 26
lambda symbol 402,26
lambda-list-keywords constant 392
lambda-parameters-l imit constant 392
l a s t function 357, 39
lcm function 350
ldb function 350
l d b - t e s t function 350
l d i f f function 357
leap years 94

l eas t -nega t ive -doub le - f loa t
constant 393

l e a s t -nega t ive - long - f loa t
constant 393

l eas t -negat ive-normal ized-
double-f loa t constant 393

leas t -negat ive-normal ized-
long-f loa t constant 393

l eas t -negat ive-normal ized-
shor t - f l oa t constant 393

l eas t -negat ive-normal ized-
s ing le - f loa t constant 393

l e a s t - n e g a t i v e - s h o r t - f l o a t
constant 393

l e a s t - n e g a t i v e - s i n g l e - f l o a t
constant 393

l e a s t - p o s i t i v e - d o u b l e - f l o a t
constant 393

l e a s t - p o s i t i v e - l o n g - f l o a t
constant 393

l eas t -pos i t ive -normal i zed-
double-f loa t constant 393

l eas t -pos i t ive -normal ized-
long-f l oa t constant 393

l eas t -pos i t ive -normal i zed-
shor t - f loa t constant 393

l eas t -pos i t ive -normal i zed-
s ing le - f loa t constant 393

l e a s t - p o s i t i v e - s h o r t - f l o a t
constant 393

l e a s t - p o s i t i v e - s i n g l e - f l o a t
constant 393

length function 367, 45
l e t special operator 320, 19, 83
l e t * special operator 320, 84
life 79
links 259
Lisp

abstractness of 3
dynamic character of 3
evolution of 1, 104, 173
evolution of programs in 55, 79, 222,

277, 284, 402
expressive power of 1
as an extension language 3
as a language for writing Lisp 28
functional paradigm of 22
functions as objects in 25, 107
interactive nature of 7, 215
model of 161
name of 31
origin of 1
present at every stage 93
programs expressed as lists 11, 160

INDEX 423

programming style 5
pure 19
role of recursion in 114
slowness of 284
speed of 413
as a specification language 4, 411
syntax of 8
transcends OOP 2,285
two kinds of operators 228
users of 6, 114
see also: Common Lisp

l isp-implementat ion-type function 390
l i sp- implementat ion-vers ion func

tion 390
l i s t function 357, 11
lists

access to elements of 39
accumulating 106
assoc(iation) 51
building 11
circular 208
compressing 36
concatenating 36
copying 36, 198
costs of 54
as a data type 11
dotted 49
doubly linked 204
empty 12
as expressions 9, 11
flat 33
as graphs 51
iteration on 24
mapping functions for 40
modifying 198
multiple ways to denote 50
nested 33
proper 49
property 134
as queues

inefficiently 51
efficiently 200

quoted 210
as sets 43
splicing 164, 202
as stacks 47,200
structure shared between 195

avoiding 199
using 200

tails of 195,206
top-level structure of 197
as trees 40,197
underlying structure of 32
vs. vectors 63

see also: backquote, conses, sequences
l i s t * function 357
l i s t - a l l - p a c k a g e s function 345
l i s t - l e n g t h function 357
l i s t e n function 375
l i s t p function 357, 33
load function 388, 39, 137
load- logical-pathname-

t r a n s l a t i o n s function 371
•load-pathname* variable 393
• l oad -p r in t* variable 393
load-t ime-value special operator 314
•load-truename* variable 393
• load-verbose* variable 393
local variables—see variables, lexical
l o c a l l y special operator 314
log function 350, 149
logand function 350
logandcl function 350
logandc2 function 350
logb i tp function 350
logcount function 350
logeqv function 350
logical-pathname function 371
log ica l -pa thname- t rans la t ions

function 371
log ior function 350
lognand function 351
lognor function 351
lognot function 351
logorcl function 351
logorc2 function 351
l o g t e s t function 351
logxor function 351
long-f l o a t - e p s i l o n constant 392
l ong - f loa t -nega t ive -eps i lon

constant 392
long-site-name function 390
loop macro 325,239,412
loop- f in i sh macro 328
lower-case-p function 355

machine-instance function 390
machine-vers ion function 390
macros

bugs in—see variables, capture of; eval
uation, multiple

built-in 14
as compilers 255
deciding which to write 173
defining 162
expansion of 162
formerly used to avoid calls 217

424 INDEX

vs. functions 172, 217
how not to use—see loop
implementation of 163
role in evolution of Lisp 173
andsetf 168,280
testing 162
see also: backquote

macro characters—see read-macros
macro-function function 315
macroexpand function 314
macroexpand-1 function 314, 162
•macroexpand-hook* variable 393
macrolet special operator 320
make-array function 363, 58
make-broadcast-stream function 375
make-concatenated-st ream function 375
make-condition function 340
make-dispatch-macro-character func

tion 386,235
make-echo-stream function 375
make-hash-table function 370, 76
make-instance generic function 334,

179
make-instances-obsolete generic func

tion 334
make- l i s t function 357, 38
make-load-form generic function 334
make-load-form-saving-slots func

tion 334
make-method macro 328
make-package function 345, 237
make-pathname function 372, 120
make-random-state function 351
make-sequence function 367
make-str ing function 364
make-s t r ing- input-s t ream function 375
make-s t r ing-output-s t ream function

375
make-symbol function 342
make-synonym-stream function 376
make-two-way-stream function 376
makunbound function 343
manifest typing—see types, manifest
map function 367, 224
map-int 105
map3 263
map-into function 367, 224
mapc function 357, 88
mapcan function 358, 202
mapcar function 358, 40
mapcon function 358
maphash function 370, 78
mapl function 358
maplis t function 358, 40, 93

mappend 203
mapping functions 40, 199, 224
mask-field function 351
max function 351, 147
McCarthy, John 1,414
Meehan, James R. 411
member function 358, 16,43
member-if function 358,44
member-if-not function 358
merge function 367, 264
merge-pathnames function 372
message-passing 192, 269, 285
methods 177

after- 188
around- 188
before- 188
applicable 185
auxiliary 187
combination of

operator 189
standard 187

identified by specializations 186
primary 187

method-combination-error

function 340
method-qual i f iers generic

function 334
Milton, John 139
min function 351, 147
minusp function 351, 147
mismatch function 367
mod function 351, 145
models of programming 5
•modules* variable 393
Moon, David A. 401,405
most 105
most-negat ive-double-f loat

constant 394
most-negative-f ixnum constant 394,

150
most-negat ive- long-f loat

constant 394
most -nega t ive-shor t - f loa t

constant 394
most -nega t ive-s ing le - f loa t

constant 394
most -pos i t ive-double- f loa t

constant 394
most-pos i t ive- f ixnum constant 394,

150
mos t -pos i t ive - long- f loa t

constant 394
mos t -pos i t i ve - sho r t - f l oa t

constant 394

INDEX 425

mos t -pos i t i ve - s ing le - f loa t
constant 394

muffle-warning function 340
multimethods—see generic functions
multiple return values 76, 89
mul t ip le-value-bind macro 320, 90
mul t ip l e -va lue -ca l l special operator

320,91
m u l t i p l e - v a l u e - l i s t macro 320, 91
mul t ip le-value-progl special opera

tor 321
mul t ip le -va lue -se tq macro 321
mul t ip l e -va lues - l imi t constant 394

name-char function 355
name clashes

between packages 238
between slot names 408
between variables

due to macroexpansion—see errors,
variable capture

due to dynamic scope 405
namestring function 372
nbu t las t function 356
nconc function 358, 202
netnews 407
next-method-p function 334, 188
n i l constant 394, 12, 33, 292
n i l ! 162
n in t e r s ec t i on function 357, 222
n in th function 357,40
no-applicable-method generic function

334
no-next-method generic function 334
Norvig, Peter 410,412
not function 321, 13
not any function 321
not every function 321
not i n l i n e declaration 315, 313
nreconc function 359
nreverse function 369, 222
nse t -d i f f erence function 359, 222
nse t -exc lus ive-or function 359
n s t r i n g - c a p i t a l i z e function 365
nstring-downcase function 365
ns t r ing-upcase function 365
nsubl i s function 359
nsubst function 360, 222
nsubs t - i f function 360, 222
nsubs t - i f -no t function 360
n subs t i t u t e function 369
nsubst i t u t e - i f function 369
n s u b s t i t u t e - i f - n o t function 370

n th function 358,39
n th-value macro 321
nthcdr function 358,39
ntimes 167
n u l l function 358, 13
numbers

comparison of 146
complex 143

conversion to reals 144
extracting components of 146

floating-point 143
contagion 143
limits of 150,407
overflow 150
printing 124
types of 150

integer 11
no limit on size of 150
parsing 68
see also: bignums, fixnums

random 146
ratio 143

conversion to integers 144
extracting components of 146

types of 143
converting between 144

numberp function 351, 20
numerator function 351, 146
nunion function 360, 222

object-oriented programming 176
analogy to hardware 176
benefits of 178
broad application of term 285
implementing 269
for reusable software 104
as a way to get run-time typing 410
and spaghetti code 408
transcended by Lisp 2, 285
two models of 192
see also: classes, CLOS, encapsulation,

inheritance, instances, message-
passing, methods, multimethods,
slots

oddp function 352, 44, 147
oil paint 5,402
open function 376, 120
open-stream-p generic function 377
operator 8
optimization

destructive operations 222
efficient algorithms 214
fast operators 228

426 INDEX

focus of 213
premature 214, 229
tail recursion—see recursion, tail
see also: consing, avoiding

optimize declaration 315, 313
feoptional—see parameters, optional
or macro 321, 14
OS/360 4
otherwise symbol 316
output 18, 123
output-s tream-p generic function 377
overflow—see numbers, floating-point

packages
based on names 239
default 136,236
defining 137
exporting from 137, 238
grossness of 411
importing into 238
nicknames of 137
purpose of 136,237
setting 137
used 137,239

•package* variable 394, 236
package-error-package generic func

tion 345
package-name function 345, 236
package-nicknames function 345
package-shadowing-symbols function

345
package-use - l i s t function 346
package-used-by- l i s t function 346
packagep function 345
painting 5, 214, 402
p a i r l i s function 358
palindromes 46, 63
parentheses 8, 17
parameters 14

compilation—see compilation parame
ters

congruent 186
efficiency of 228
keyword 103
optional 102
required 102
rest 102
specialized—see specialization

pa r se - i n t ege r function 352, 68
parse-namestr ing function 372
pathname function 372
pathnames 120
pathname-device function 373

pathname-directory function 373
pathname-host function 372
pathname-mat ch-p function 373
pathname-name function 373
pathname-type function 373
pathname-vers ion function 373
pathnamep function 373
patterns

for destructuring 85, 103
matching 249

peek-char function 377, 123
phase function 352
Perdue, Crispin 401
PGM 152
p i constant 394, 149
Pitman, Kent M. 401
planning 5,229
plists—see property lists
plusp function 352, 147
poetry 407
pointers

avoiding 219
conses as pairs of 32
implicit 34
see also: lists

pop macro 359, 47
pos i t i on function 367, 64
p o s i t i o n - i f function 367, 65
p o s i t i o n - i f - n o t function 368
ppr in t function 384, 168
pp r in t -d i spa t ch function 384
p p r i n t - e x i t - i f - l i s t - e x h a u s t e d

macro 384
p p r i n t - f i l l function 384
ppr in t - inden t function 384
p p r i n t - l i n e a r function 384
ppr in t - l og i ca l -b lock macro 384
pprint-newline function 385
ppr int -pop macro 385
p p r i n t - t a b function 385
p p r i n t - t a b u l a r function 385
precedence 182

implementing 274
purpose of 183

prefix notation 8
premature optimization 214
primary methods 187
p r i n l function 386, 123
p r i n l - t o - s t r i n g function 386
princ function 385,123
p r i n c - t o - s t r i n g function 385
p r i n t function 385, 160
• p r i n t - a r r a y * variable 394, 59, 280
•p r in t -base* variable 394, 113

INDEX 427

•p r in t - case* variable 394
• p r i n t - c i r c l e * variable 394, 208
•pr in t -escape* variable 394
•print-gensym* variable 395
•p r in t - l eng th* variable 395
• p r i n t - l e v e l * variable 395
• p r i n t - l i n e s * variable 395
•pr int-miser-width* variable 395
pr in t -no t - readab le -ob j ect generic

function 385
pr in t -ob jec t generic function 385
pr in t -ppr in t -d i spa tch

variable 395
• p r i n t - p r e t t y * variable 395
•p r in t - r ad ix* variable 395
•pr in t - readably* variable 395
pr in t - r ight -margin variable 395
print -unreadable-obj ect macro 386,

70
p robe- f i l e function 374
proclaim function 315, 215
profilers 214
prog macro 321
prog* macro 321
progl macro 321, 127, 274
prog2 macro 321
progn special operator 321, 24
progv special operator 321
prompt 7, 19
property lists 134
provide function 388
psetf macro 322
psetq macro 322
push macro 359,47
pushnew macro 359, 49

qualifiers 188
•query-io* variable 395
queues

using lists as—see lists, as queues
using vectors as 126

Quicksort 164
quote special operator 315, 10, 161

random function 352, 146
random-choice 170
•random-state* variable 395
random-state-p function 352
random text 138
rapid prototyping 3, 23, 401
rassoc function 359
rassoc- i f function 359
r a s soc - i f -no t function 359

ratios—see numbers, ratio
r a t i o n a l function 352
r a t i o n a l i z e function 352
r a t ionalp function 352
ray-tracing 151
rcur ry 110
read function 387, 18, 122
• read-base* variable 395
read-byte function 377, 234
read-char function 377, 123
re ad-char-no-hang function 377
• r ead-de fau l t - f loa t - fo rmat*

variable 396
r e a d - d e l i m i t e d - l i s t function 387,

236
read-eval variable 396, 406
read-f rom-s t r ing function 387, 123
r e a d - l i n e function 377, 121
read-macros

defining 235
dispatching 131, 235
predefined 399, 130

read-preserving-whitespace
function 387

read-sequence function 377
read-suppress variable 396
• read tab le* variable 396
read tab le -case function 387
readtablep function 387
re a lp function 352
r e a l p a r t function 352, 146
Rees, Jonathan A. 405, 411
recursion 16

efficiency of 116
and functional programming 114
can't be inlined 217
local 101
proper metaphor for 16
tail 116,215,289,409
using 114
verifying 42

reduce function 368, 66
extends two-argument functions 66
: key argument to 406
more efficient than apply 228

r e i n i t i a l i z e - i n s t a n c e generic func
tion 334

rem function 352, 145
remf macro 359
remhash function 371
remove function 368, 22, 55, 66
remove-duplicates function 368, 66
remove-if function 368, 66
remove-if-not function 368

428 INDEX

remove-method generic function 335
remprop function 343
rename-f i l e function 374
rename-package function 346
rendering 151
replace function 369
Replicator 414
requ i re function 388
ftrest—see parameters, rest
r e s t function 359
r e s t a r t - b i n d macro 340
r e s t a r t - c a s e macro 341
res tar t -name function 341
r e tu rn macro 322, 82
return-from special operator 322, 81
reusable software 3, 104
revappend function 359
reverse function 369, 46
rewriting 262,402
rhyming dictionaries 224
ring buffers 126
risk 5, 6
room function 390
r o t a t e f macro 322, 165
round function 352, 145
rounding

to even digit 145
unpredictable, by format 125

row-major-aref function 363
row-major order 221
rp laca function 359
rplacd function 359
rules 247
run-length encoding 36
run-time typing 2,6,218,410
Russell, Stuart 412

safety compilation parameter 214
s b i t function 363
s c a l e - f l o a t function 352
schar function 364
Scheme 109,405,411
scope 112,405
search function 369
search

binary 60
breadth-first 51

second function 357, 40
Sedgewick, Robert 402, 406
self-modifying programs 210
sequences 45, 63

access to elements of 63
copying segments of 46

finding the lengths of 45
finding elements of 64
removing duplicates from 66
replacing elements of 41
reversing 46
sorting 46, 164
see also: arrays, lists, vectors

sequence functions 63
se t function 343
sets

hash tables as 77
lists as 43

se t -d i f fe rence function 359, 45
se t -d ispatch-macro-charac ter

function 387,235
se t - exc lus ive -o r function 359
set-macro-character function 387,

235
s e t - p p r i n t - d i s p a t c h function 386
set-syntax-from-char function 387
set f macro 322, 21

defining expansions of 100, 404
macros that expand into 168
macro call as first argument to 168

se tq special operator 322
seventh function 357, 40
shadow function 346
shadowing-import function 346
Shalit, Andrew 405
s h a r e d - i n i t i a l i z e generic

function 335
sharp-quote 25, 131
sh i f t f macro 322
shor t - f l o a t - e p s i l o n constant 392
sho r t - f l oa t -nega t ive -eps i l on con

stant 392
shor t -s i te-name function 390
shortest path 51
side-effects 19,22,201
s ignal function 341
signum function 353,146
s imple -b i t -vec to r -p function 363
simple-condit ion-format-

arguments generic function 341
s imple-condi t ion-format-control

generic function 341
s imple-s t r ing-p function 364
simple-vector-p function 364
s in function 353, 149
s ing le? 105
s ing le - f l o a t - e p s i l o n constant 392
s ing l e - f l oa t -nega t ive -eps i l on

constant 392
sinh function 353, 149

INDEX 429

s ix th function 357, 40
sleep function 390
slots

accessors for 179
encapsulating 191
inheritance of 181, 408
initargs of 180
initforms of 180
properties of 179
shared 180
uninitialized 179

slot-boundp function 335
s l o t - e x i s t s - p generic function 335
slot-makunbound generic function 335
s lo t -miss ing generic function 335
slot-unbound generic function 335
s lo t -va lue function 335
software-type function 390
software-version function 390
some function 323, 47
sor t function 369, 46
sorting—see Quicksort, sor t , s t a b l e - s o r t ,

binary search trees
space compilation parameter 214
spaghetti code 408
spec ia l declaration 315, 313
specialization (array) 220
specialization (parameter)

on classes 184
identifies method 186
on objects 186
restricted in message-passing 192
on types (apparent) 186

spec ia l -opera tor -p function 315
special operators 10, 161, 173
specifications 4, 229, 411
specific 182
Springer, George 405
speed compilation parameter 214
sqr t function 353, 149
square roots 149
s t a b l e - s o r t function 369, 402
stacks

lists as 47
vectors as 223

standard method combination type 190,
187

standard-char-p function 355
•s tandard- input* variable 396, 119
standard-object class 182
•s tandard-output* variable 396, 119,

260
Starbuck, Orca 405
Steele, Guy Lewis Jr. 89, 401, 405, 409

s tep macro 390
s t ore-value function 342
Strassmann, Steve 405
stream-element-type generic function

377
s t ream-error-s t ream generic function

377
stream-external-format generic func

tion 377
streamp function 378
s t r i n g function 364
strings

access to elements of 62
concatenating 63
comparison of 62
creating 62
literal 11
sorting 62
vs. symbols 138
as vectors of characters 61
see also: arrays, sequences, vectors

streams
binary 234
character 119

s t r i n g - c a p i t a l i z e function 365
string-downcase function 365, 140
s t r i ng -equa l function 365, 62
s t r i n g - g r e a t e r p function 365
s t r i n g - l e f t - t r i m function 365
s t r i n g - l e s s p function 365, 265
s t r i ng -no t - equa l function 365
s t r i n g - n o t - g r e a t e r p function 365
s t r i n g - n o t - l e s s p function 365
s t r i n g - r i g h t - t r i m function 365
string substitution 125
s t r i n g - t r i m function 365
s t r ing-upcase function 365
s t r i n g / - function 366
s t r ing< function 366, 265
string<= function 366
s t r ing= function 366
s t r ing> function 366
string>= function 366
s t r ingp function 365
strong typing 218,410
structures 69

circularities in 209
default contents of 70
defining 69
display of 70
vs. instances 178, 179
names of access functions for 70
as types 69

sub l i s function 359, 252

430 INDEX

subseq function 369, 46
subsetp function 360
subst function 360, 42
subs t - i f function 360
s u b s t - i f - n o t function 360
s u b s t i t u t e function 369, 41
s u b s t i t u t e - i f function 369
s u b s t i t u t e - i f - n o t function 370
subtypep function 315
superclasses 177, 181
Sussman, Gerald J. 405
Sussman, Julie 405
svref function 364, 59, 220
sxhash function 371
symbols 11

conceptually atomic 138
exported—see packages, exporting from
interning of 136,237
names of 133, 199
property lists of 134
qualified 137
vs. strings 138
underlying structure of 135
uninterned—see gensyms
uninterning 191
as variable names 15, 138
see also: packages

symbol-function function 343, 99
symbolic computation 247
symbol-macrolet special operator 315
symbol-name function 343, 133
symbol-package function 343, 237
symbol-pl is t function 343, 135
symbol-value function 343, 138
symbolp function 343
synonym-stream-symbol function 378

T 411
t class 182
t constant 396, 13
tabloids 180
tags

for catch 91
for go 83
in HTML 257

tagbody special operator 323, 81
tail call 216
t a i l p function 360, 195
tail recursion—see recursion
tan function 353, 149
tanh function 353, 149
templates—see backquote
tempera 5

t en th function 357,40
TBX 3
* terminal - io* variable 396
t e r p r i function 378, 123
the special operator 315, 219, 410
t h i r d function 357, 13, 40
throw special operator 323, 91
time macro 390, 221
time machines 94
time-stamps 108
toplevel 7, 160, 215
Touretzky, David S. 402
t r a ce macro 390, 288
• t r ace -ou tpu t* variable 396
t rans la te - log ica l -pa thname

function 373
t ranslate-pathname function 373
trees

binary 40
copying 41, 198
replacing elements of 42
see also: binary search trees

t r ee -equa l function 360
truename function 374
t runca te function 353, 144
truth 13
two-way-stream-input-stream

function 378
two-way-stream-output-stream

function 378
type declaration 315, 313
types

checking 244
declaring—see type declarations
determining 27
hierarchy of 27,232
manifest 27,218
specifying 232

type declarations 218
for arrays 219
for expressions 219
for variables 218
macros to generate 410
optional nature of 218
for slots 181
violating 294
when useful 219

type-error-datum generic function 316
type-er ror -expected- type generic

function 316
type-of function 316
typecase macro 323, 87, 107
typep function 316, 27
type specifiers—see types

INDEX 431

unbound-slot- instance function 335
unbound variable 291
underflow—see numbers, floating-point
unexport function 346
unintern function 346, 191
union function 360, 45
universal time 404
unless macro 323, 85
unread-char function 378
untrace macro 391, 288
unwind-protect special operator 323,

92, 121
upda te - ins t ance - fo r -d i f f e ren t -

c lass generic function 336
upda te - ins tance- fo r - redef ined-c lass

generic function 336
upgraded-array-element-type func

tion 364
upgraded-complex-part-type function

353
upper-case-p function 355
use-package function 346, 239
use-value function 342
user-homedir-pathname function 391
user- input 246
utilities 104,262

values function 323, 90
v a l u e s - l i s t function 323
variables

capture of
avoiding 166,411
intentional 172

free 107
special 20, 112, 138

implicit creation of 21
rebindingof 113,260

lexical 14,19,23,107,112,138
relation to symbols 138
shared 108
unbound 291
unused 294

vector function 364, 59
vectors

access to elements of 59
creating 59
vs. lists 63
literal 59
simple 59,220
see also: arrays, ring buffers

vector-pop function 364, 223
vector-push function 364, 223
vector-push-extend function 364

vectorp function 364, 131
vi 17

warn function 342
warnings 294
Waters, Richard C. 401
Web 257
Weinreb, Daniel L. 401
when macro 323, 85
while 164
White, Jon L 401
wiId-pathname-p function 373
with-accessors macro 335
with-compi la t ion-uni t macro 388
w i t h - c o n d i t i o n - r e s t a r t s macro 342
with-gensyms 170
w i t h - h a s h - t a b l e - i t e r a t o r

macro 371
with- input - f rom-s t r ing macro 378
with-open-f i l e macro 378, 121
with-open-stream macro 378
w i t h - o u t p u t - t o - s t r i n g macro 379
with-package- i t e ra to r macro 346
wi th - s imp le - r e s t a r t macro 342
w i t h - s l o t s macro 335
with-s tandard- io-syntax macro 388
wri te function 386
wri te -by te function 379, 234
wr i te -char function 379
w r i t e - l i n e function 379
write-sequence function 379
w r i t e - s t r i n g function 379
w r i t e - t o - s t r i n g function 386
World Wide Web—see Web

y-or -n-p function 379
yes-or-no-p function 379

zerop function 353, 39, 147

* variable 396, 54
* function 353, 148
** variable 396, 54
*** variable 396, 54
+ variable 396
+ function 353, 147
++ variable 396
+++ variable 396
- variable 354
- function 396, 147
/ variable 396
/ function 354, 148

4 3 2 INDEX

//variable 396
///variable 396
/= function 353, 146
1+ function 354, 148
1- function 354, 148
< function 353, 146
<= function 353, 146
= function 353, 146
> function 353, 146
>= function 353, 146

#! 235
#w# read-macro 399,208
' read-macro
#(read-macro
#* read-macro
#+ read-macro
#- read-macro
#. read-macro
#: read-macro
#< read-macro
#n= read-macrc
#? 235
#A read-macro
#B read-macro
#C read-macro
#0 read-macro
#P read-macro
#R read-macro
#S read-macro
#X read-macro
[235
\ read-macro
#] 235
#{ 235
| read-macro
#} 235
' read-macro '.

399, 25, 131, 402
399,59,131
399
399
399
399, 406
399, 167
399,70,131

> 399,208

399,59,131
399
399, 143
399
399
399
399, 131
399

399, 61

399, 61, 131

399, 10, 130, 235
see also: quote

; read-macro '. 399, 61
' read-macro 399

see also: backquote

235
, see backquote, comma within
, 0 see backquote, comma-at within
: 137,238
: : 237
\ 134
1 133

	Contents
	1. Introduction
	1.1. New Tools
	1.2. New Techniques
	1.3. A New Approach

	2. Welcome to Lisp
	2.1. Form
	2.2. Evaluation
	2.3. Data
	2.4. List Operations
	2.5. Truth
	2.6. Functions
	2.7. Recursion
	2.8. Reading Lisp
	2.9. Input and Output
	2.10. Variables
	2.11. Assignment
	2.12. Functional Programming
	2.13. Iteration
	2.14. Functions as Objects
	2.15. Types
	2.16. Looking Forward

	3. Lists
	3.1. Conses
	3.2. Equality
	3.3. Why Lisp Has No Pointers
	3.4. Building Lists
	3.5. Example: Compression
	3.6. Access
	3.7. Mapping Functions
	3.8. Trees
	3.9. Understanding Recursion
	3.10. Sets
	3.11. Sequences
	3.12. Stacks
	3.13. Dotted Lists
	3.14. Assoc-lists
	3.15. Example: Shortest Path
	3.16. Garbage

	4. Specialized DataStructures
	4.1. Arrays
	4.2.Example: Binary Search
	4.3.Strings and Characters
	4.4.Sequences
	4.5.Example: Parsing Dates
	4.6.Structures
	4.7. Example: Binary Search Trees
	4.8.Hash Tables

	5. Control
	5.1. Blocks
	5.2. Context
	5.3.Conditionals
	5.4. Iteration
	5.5. Multiple Values
	5.6. Aborts
	5.7. Example: Date Arithmetic

	6. Functions
	6.1. Global Functions
	6.2. Local Functions
	6.3. Parameter Lists
	6.4. Example: Utilities
	6.5. Closures
	6.6. Example: FunctionBuilders
	6.7. Dynamic Scope
	6.8. Compilation
	6.9. Using Recursion

	7. Input and Output
	7.1. Streams
	7.2. Input
	7.3. Output
	7.4. Example: String Substitution
	7.5. Macro Characters

	8. Symbols
	8.1. Symbol Names
	8.2. Property Lists
	8.3. Symbols Are Big
	8.4. Creating Symbols
	8.5. Multiple Packages
	8.6. Keywords
	8.7. Symbols and Variables
	8.8. Example: Random Text

	9. Numbers
	9.1. Types
	9.2. Conversion andExtraction
	9.3. Comparison
	9.4. Arithmetic
	9.5. Exponentiation
	9.6. Trigonometric Functions
	9.7. Representation
	9.8. Example: Ray-Tracing

	10. Macros
	10.1. Eval
	10.2. Macros
	10.3. Backquote
	10.4. Example: Quicksort
	10.5. Macro Design
	10.6. Generalized Reference
	10.7. Example: MacroUtilities
	10.8. On Lisp

	11. CLOS
	11.1. Object-OrientedProgramming
	11.2. Classes and Instances
	11.3. Slot Properties
	11.4. Superclasses
	11.5. Precedence
	11.6. Generic Functions
	11.7. Auxiliary Methods
	11.8. Method Combination
	11.9. Encapsulation
	11.10. Two Models

	12. Structure
	12.1. Shared Structure
	12.2. Modification
	12.3. Example: Queues
	12.4. Destructive Functions
	12.5. Example: Binary SearchTrees
	12.6. Example: Doubly-LinkedLists
	12.7. Circular Structure
	12.8. Constant Structure

	13. Speed
	13.1. The Bottleneck Rule
	13.2. Compilation
	13.3. Type Declarations
	13.4. Garbage Avoidance
	13.5. Example: Pools
	13.6. Fast Operators
	13.7. Two-Phase Development

	14. Advanced Topics
	14.1. Type Specifiers
	14.2. Binary Streams
	14.3. Read-Macros
	14.4. Packages
	14.5. The Loop Facility
	14.6. Conditions

	15. Example: Inference
	15.1. The Aim
	15.2. Matching
	15.3. Answering Queries
	15.4. Analysis

	16. Example: Generating HTML
	16.1. HTML
	16.2. HTML Utilities
	16.3. An Iteration Utility
	16.4. Generating Pages

	17. Example: Objects
	17.1. Inheritance
	17.2. Multiple Inheritance
	17.3. Defining Objects
	17.4. Functional Syntax
	17.5. Defining Methods
	17.6. Instances
	17.7. New Implementation
	17.8. Analysis

	A. Debugging
	B. Lisp in Lisp
	C. Changes to Common Lisp
	D. Language Reference
	Notes
	Index

